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Executive summary 

SAFE-UP’s Work Package 2 aimed at understanding the impact of vehicle automation 

technologies on safety by leveraging newly developed behavioural traffic simulation tools. 

The developed tools allow to simulate specific road networks with a variable proportion of 

automated vehicles to non-automated traffic participants (including human-drivers, 

pedestrians, cyclists, and powered two-wheelers). The simulation models are detailed 

enough to realistically recreate the effects of unexpected events (like surprise cut-ins) to 

determine whether these technologies induce changes (positive or negative) in surrogate 

indicators of traffic safety.  

Task 2.5 originally aimed run and analyse the necessary simulations to identify the possible 

effect of automated vehicles (AVs) on safety. Although not a part of its original mandate, 

Task 2.5 took upon itself the design of an appropriate simulation methodology that leveraged 

the models and simulation platform developed in Tasks 2.3 and 2.4. The methodology has 

been successfully implemented, allowing one to run different simulation scenarios and 

perform comparative analysis to understand the effect of AVs from several perspectives. 

Implementing this methodology posed significant challenges. Several activities took much 

bigger effort than planned, as for example, the identification of the parameters that needed 

to be changed in the simulations took several iterations, modifications needed to be done to 

the models that were already finished and rework the scripts to run the simulations several 

times. On the other hand, the computational platform over which the simulations were run 

was changed in mid-2022 due to the need for larger computational power. The simulation 

system is now hosted on Amazon Web Services, a migration with significant technical 

challenges, that was necessary to address the necessary increase of AV rate penetration 

and the large amount of simulation runs needed to obtain the results we were aiming for. 

All these challenges, some of which were unexpected, were solved but limited the time and 

resources left to perform the comparative analysis needed to ascertain the effects of AVs 

on safety. This was done by comparing baseline simulations without AVs with simulation 

that contained AVs. Several batches of simulations were done, the starting batch was a set 

of 100 simulations. Later batches included up to 500 simulations. Due to time and resources, 

the work planned in the grant agreement has been finished with several analyses but the 

results have not been as conclusive as expected. 

It is recommended that the community sets up a follow-up project focused on continuing the 

work in this work package, re-using our simulation platform. Such project should support the 

collection of the data necessary to calibrate and validate the simulation environment so it 

becomes a true digital twin of reality. It should also help improve the simulation models 

developed in this project, and perform larger and longer batches of simulations to fully 

explore the possible future safety-critical situations in mixed traffic.  
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1.  Introduction 

1.1  Future Traffic Simulation 

One of the goals of WP2 is to develop a micro-simulation-based approach to assess the 

impact of automated driving technologies on safety. Our approach is based on differential 

analysis. That is, we first create a baseline simulation of a “typical” (urban) environment 

populated with a typical mix of traffic participants (e.g., human driven vehicles, pedestrians, 

powered two-wheelers, cyclists, etc.). Such baseline simulation produces over time a 

number of traffic interactions that can be classified as non-safety-critical or safety-critical 

according to a different safety indicators. After the baseline simulations are established, they 

are repeated with only one difference: a number of human driven vehicles are replaced by 

automated vehicles (AVs). In this way, we theorize that any changes in the statistics of safety 

indicators can be attributed to the presence of AVs. 

In order to implement this approach, a number of elements from different tasks in WP2 need 

to be correctly combined. First the new simulation models developed in Task 2.3 need to be 

integrated in a single simulation environment. This has been done in Task 2.4, which has 

also developed an appropriate road network that enables to generate most of the important 

safety-critical situations identified in Task 2.1 (Deliverable 2.6). The simulation results were 

analysed with a number of safety metrics, which were developed in Task 2.2. Task 2.5 made 

use of these combined assets to run and analyse interactively multiple simulation 

experiments. 

1.2  Experiment Design  

As it is described in deliverable D.2.8, two types of simulation experiments were identified 

during the first SAFE-UP Simulation Workshop in October 2021: 1) Experiments containing 

complete road network layouts, allowing several types of driving scenarios and interactions 

to arise and 2) experiments containing only single driving scenarios, allowing us to focus on 

specific kinds of critical situations. Given the goals of WP2 and Task 2.5, it was decided that 

the main focus would be on the first type of experiment, called the “Alpha” experiments. 

An Alpha experiment contains the following elements: 

i. A road network containing enough elements (road furniture, traffic participants, etc.) 

to reproduce several driving scenarios and interactions of interest. 

ii. Sufficient number of traffic participants to re-create traffic properties of interest (e.g., 

vehicle densities, speed distributions, congestion levels, etc.). 

iii. Calibrated models for each type of road participant (human driving cars, AVs, 

vulnerable road users, etc.) from the perspective of driving safety (i.e., typical inter-vehicle 

following distances, reaction times for drivers and pedestrians, etc.). 
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iv. A test matrix indicating the specific changes in independent variables that are 

hypothesized to create detectable changes in safety indicator statistics. 

v. Analysis toolchain to process simulation outputs to test the hypotheses. 

Regarding these experiments, as was mentioned in D.2.8, one must consider the following:  

1.  It is not clear whether significant changes in safety indicators will be detectable 

when replacing human-driven vehicle by AVs, whether those changes are positive 

or negative, or whether new types of critical situations arise when AVs interact 

with other road users.  

2. It is also important to remark that although the approach outline above is based 

on statistical analysis, it will be correct only qualitatively. For the analysis to also 

be quantitatively correct, the simulation experiment described above should 

contain a digital twin of a real road network. 

3. Due to the lack of data to calibrate and validate the simulation environment, it 

does not resemble the “real world” closely. Consequently, the analysis can only 

indicate the validity of our hypotheses but cannot yield results that can applicable 

beyond the simulation environment. 

4. Traffic parameters were adjusted to represent three types of traffic scenarios: low 

congestion moments of the day (i.e., outside rush-hour), medium congestion (i.e., 

between morning and afternoon rush hours), and rush hours. The parameters for 

such moments were adjusted by AIM drawing on their long experience on setting 

up such simulations. 

 

Figure 1: Layout of Town 7 
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2. Metrics baseline 

2.1 Simulation Parameters/Metrics to be analysed 

The metrics and parameters were defined in Task 2.2. and more information can be found 

in D.2.14. In T.2.5 the parameters of interest such as the number of vehicles of each type; 

the penetration rate of AVs; the distribution of driver, rider, pedestrian, and cyclist 

characteristics (e.g., attentiveness, fatigue) were defined and added in tables that can be 

seen below.  

2.1.1  Parameters PTW model  

The complete list of parameters for the PTW-model to include variability in PTW rider 

behaviour can be found in Table 1. These parameters allow the incorporation of human 

factors related to distraction, response time, field of view (that can be affected by different 

conditions like hard rain or fog), right of way violation and desired target speed. 

Table 1. Parameters for the PTW-model to include variability in PTW rider behaviour. 

Parameter 

Name 

AIMSUN 

interface 
Definition Range 

Value for 

Standard 
Distribut. Type 

Delay in 

Response 

Time 

(Amount) 

Attributes of 

Scenario: 

GKExperim

ent 

Distraction 

duration: 

Time 

added to 

the braking 

response 

time due to 

distraction 

(delay 

time) 

[0 - 1.5] 
1.5s 

(+/-0.68s)  

No 

Distribution 
Fixed  

Delay/Incre

ase in 

Response 

Time / 

Distraction 

(Probability) 

Attributes of 

Scenario: 

GKExperim

ent 

Probability 

to have a 

“distraction 

presence” 

(delay of 

response 

time) 

[0% – 

100%] 
0.01 (1%) 

lognormal 

(no 

literature 

about mu 

and sd); 

Fixed   

(respon

se time 

per 

each 

agent 

defined 

internall

y in the 

model) 
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Field of 

View to 

detect 

objects 

Attributes of 

Scenario: 

GKExperim

ent 

Horizonal 

angle of 

view of 

PTW rider 

[20 – 

100]de

g 

60 
No 

Distribution 

Fixed - 

Same 

value 

for all 

the 

PTW 

agents 

Yield right-

of-way 

violation 

(Probability) 

Attributes of 

Scenario: 

GKExperim

ent 

Probability 

to cross the 

intersectio

n without 

stopping, 

  

independe

ntly of the 

presence 

of a vehicle 

with right of 

way) 

[0% – 

100%] 

0.001 

(0.1%) 

lognormal 

mu 

=0.0001;  

sd:16 

 

Fixed  

(the 

value 

per 

each 

agent 

defined 

internall

y in the 

model) 

Desired 

Target 

Speed 

Vehicle 

Type Menu:  

Motorcycle 

 Dynamic 

Model - 

Desired 

Speed 

Desired 

Speed 

defined in 

AIMSUN 

as "Speed 

Limit 

Acceptanc

e" in 

Dynamic 

Model 

parameters 

of 

motorcycle

s 

30-100 

for 

speed 

limit 

(50 

km/h) 

55km/h 

(sd. 10) 

 "Speed 

Limit 

Acceptanc

e" = 1.1; 

"Deviation"

=10; 

Min=0.8;  

Max=1.8 

Normal 

Distribut

ion:     

The 

value 

for each 

agent 

defined 

by 

AIMSU

N 
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2.1.2  Parameters pedestrian and cyclist  

Within the scope of WP2 of the SAFE-Up project, ika has developed two VRU simulation 

models, the pedestrian and the cyclist model. As described in deliverable D2.9, the model 

behaviour can be changed according to different parameters. The pedestrian model 

contains of the following parameters that influence the pedestrians’ behavior:  

2.1.2.1 Pedestrian model parameters 

• sense_radius 

o Description: Maximal distance to road objects that can be perceived by the 

pedestrian. The larger the radius, the larger/wider the field of view of the 

pedestrian. This means that action can be taken earlier and with more 

anticipation. For critical behavior, the radius must be reduced. 

▪ Definition range: [0.0 - ∞] [m] 

• blindspot_angle 

o Description: Backwards angle the pedestrian cannot see, in radians, 

measured sideways to the heading direction. The angle builds up 

symmetrically from behind areas are excluded from the field of view. Objects 

located in this area are not perceived. The larger the angle, the less the 

pedestrian sees. 

▪ Definition range: [0.0 - π] [rad] 

The cyclist model contains the parameters “sense distance”, “blindspot angle”, “selected 

driving offset”, “ttc and distance” as well as different “driving patterns”. By adjusting this 

parameters, the cyclists’ behavior can be modified. In the following, the parameters are 

explained shortly. 

2.1.2.2 Cyclist model parameters 

• sense_distance 

o Description: Maximal distance to road objects that can be perceived by the 

cyclist. The larger the radius, the larger/wider the field of view of the cyclist. 

This means that action can be taken earlier and with more anticipation. For 

critical behavior, the radius must be reduced. 

▪ Definition range: [0.0 - ∞] [m] 

• blindspot_angle 

o Description: Backwards angle the cyclist cannot see, in radians, measured 

sideways to the heading direction. Areas are excluded from the field of view. 
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Objects located in this area are not perceived. The larger the angle, the less 

the cyclist sees. 

▪ Definition range: [0.0 - π] [rad] 

• selected_driving_offset 

o Description: Desired driving offset to the side of road. The larger the value, 

the further the driver drives in the lane. Accordingly, overtaking then becomes 

more difficult. 

▪ Definition range: [0.0 - ∞] [m] 

• ttc and distance 

o Description: Time to Collision from which the driver moves to the side. The 

larger the value, the earlier the driver reacts if an interaction with another 

object is upcoming. For more critical behavior, the value must be reduced, 

because the cyclist then reacts late to an approaching vehicle. 

▪ Definition range: [0.0 - ∞] [s] 

▪ distance is used if ttc = none 

▪ Definition range: [0.0 - ∞] [m] 

• driver pattern 

o Description: Percentage distribution of driving patterns of cyclists, influences 

amplitude and frequency of wiggle whilst driving. All driver patterns are scaled 

by speed (defined internally in model). 

▪ pattern1: Percentage of cyclists with driving pattern 1; lowest 

frequency; maximum of amplitude: 0.57m (of main frequency 

component). 

▪ pattern2: pattern 2 cyclist at mean frequency; maximum of amplitude: 

0.72m (of main frequency component). 

▪ pattern3: Percentage of cyclists with driving pattern 3; highest 

frequency; maximum of amplitude: 1.0m (of main frequency 

component). 

▪ Definition range [0.0 – 1.0] [-] 
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2.1.3 Parameters of HDM  

The complete list of parameters for the HDM can be found in Deliverable 2.11 [1]. The HDM 

is composed of a carf-following model augmented with a human perception model that 

allows the incorporation of a number of human factors. For the purpose of Task 2.5, the 

human perception model was disabled and all the car-following model parameters were 

fixed to their fixed calibration values (see [1]), with the exception of two parameters that were 

allowed to vary: 

• Desired time gap (the distance between an HDM and its predecessor in the same 

lane, divided by the HDM speed). This parameter was modelled as a uniform 

random variable between 0.5 seconds and 1.5 seconds. 

• Desired speed. This parameter was modelled as a Gaussian random variable with 

a mean of 50kph and a standard deviation of 5kph. 

As explained in Sections 3 and 4, for the simulation experiments run in the Amazon Web 

Services environment, only the desired time gap was allowed to vary (while the desired 

speed was held constant), and for the analysis performed by TNO the opposite was true 

(see Sections 3 and 4 for details). 

Finally, the metrics used to detect conflicts of interest were the time to collisions and the 

post encroachment time, with thresholds of 1.5 seconds and 5 seconds respectively. 
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3. Methodology & Implementation  

The simulation environment, described in deliverable D2.7 and which is summarized in 

Figure 2, had to be changed due to some challenges during the implementation of the 

models in the simulation and the computing force needed to carry out the simulation. In this 

section the challenges faced and the implemented solutions to the simulation will be 

explained.  

The workflow defined previously included the Aimsun Next platform running in a Windows 

10 computer, the Human driver and PTW models were implemented as a dynamic library, 

while the cycling and pedestrians models were run in a UBUNTU 20 computer and the AVs 

model did run in a UBUNTU 18 computer. The bikes, pedestrians and AVs models used as 

interface the Aimsun Next platform using the TCP/IP communication through External Agent 

Interface (EAI). 

 
Figure 2: Simulation environment schema 

This integration deployed in computers/servers owned by end users, due to problems in 

scaling this solution into a high-performance computing scheme in private computers, the 

implementation was moved to a public cloud infrastructure that provides computing 

scalability on demand. As a result of that some changes have been made into the 

architecture of the simulation environment with a migration of all processes to Ubuntu 20. 

The chosen cloud platform is AWS due to ease of deployment, cost competitiveness and 

scalability. The simulation environment based on AWS is explained in deliverable D2.12 

  

Micro SDK

TNO- Human Driver model
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Windows 10
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Although considering the current scheme, the workflow defined in the beginning did not 

change, the experiment execution is described by the following steps (see Figure 3) was not 

changed: 

1. Definition of the Scenario simulation 

2. Simulation Run 

3. Collect Traffic Simulation outputs 

4. Analyse Simulation outputs 

 

 

Figure 3: Experiment workflow 

The integration was complemented by two python scripts, one to define the simulation 
parameters (step 1 in Figure 4) and another to generate the folder structure and files 
required to execute all the experiments (step 1 inFigure 4). They allow the automatization of 
the work flow in order to deal with a massive number of simulations. 
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Figure 4 AWS simulations workflow 

3.1 Monte Carlo Simulation Procedure  

In order to determine whether the presence of automated vehicles do have an influence on 

the different safety indicators mentioned in Section 2, it was decided early on to conduct 

only a comparative study between two distinct scenarios: one without the presence of 

automated vehicles (called the baseline scenario) and another with automated vehicles (the 

AV scenario). 

Both scenarios contain several types of traffic participants including, human drivers, PTWs, 

cyclists, etc. Each participant is represented in the simulation environment by a(n agent) 

model. Although each model has a fixed structure, the model parameters can be varied at 

will. 

Each instance of a participant model in the simulation displays different behaviour than any 

other instance of the same participant in the simulation. Usually, every instance of a 

participant’s model is given a set of parameters that are drawn from prescribed distributions. 

As a consequence, no two simulation experiments are exactly the same. So, it is to be 

expected that the number, type and (possibly) severity of critical interactions change from 

one experiment execution to the next. 

In order to compare the baseline and AV scenarios, one first must establish clear statistics 

for similar safety indicators in each case. That is, one needs to understand the distributions 

of the safety indicators as a function of the variation of the parameters of every model in 

both scenarios. To formalize this idea, consider the following definitions: 

• In every simulation experiment, the independent variables, 𝑿, (also known as 

explanatory or predictor variables) are the parameters of every instance of every 

participant model in the simulation. 
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• In every simulation experiment, the dependent variables, 𝒀, (also known as 

response or outcome variables) are the number of high-risk interactions, crashes 

or any other event used to study traffic safety, that occur during the simulation 

events. 

Since the independent variables are stochastic in nature, the dependent variables are too. 

This, the hypothesis we are trying to test with our simulations is:  

where 𝐸{. } denotes the expected value. One of the best established, practical methods to 

test this hypothesis is the Monte Carlo method [2]. The basic Monte Carlo setup is described 

next. 

3.1.1 Basic Monte Carlo setup 

The goal of the Monte Carlo method is to estimate the statistics of 𝒀 by running a limited 

number of (statistically independent) simulations.  

The basics steps are: 

1. Generate N samples of the parameters of every model instance, 𝑿 by 

drawing from the knows parameters’ distribution 𝑓𝑥 .  The samples are called 

𝑋1, … , 𝑋𝑁. 

2. For each 𝑋𝑖 ,  𝑖 = 1, … ,  𝑁,  run a simulation experiment and compute 𝑌𝑖 

3. Estimate 𝐸{𝒀} ≈
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖 ,  

4. Estimate 𝜎2{𝒀} ≈ ((
1

𝑁
∑ 𝑌𝑖

2𝑁
𝑖 ) − (

1

𝑁
∑ 𝑌𝑖

𝑁
𝑖 )

𝟐
)

𝑵

𝑵−𝟏
, 

The estimates of the mean and variance in, respectively, steps three and four generally 

converge to constant values as N  increases.  

3.1.2 Practical Monte Carlo Setup 

A number of practical challenges were foreseen in applying this simple scheme to our traffic 

simulations. One was that the vector 𝑿, which would ideally contain all the parameters from 

every instance of each participant model, would have been quite large (see Section 2). So, 

sampling from the parameter distribution 𝑓𝑋 would have been difficult to accomplish if all 

parameters from all models were allowed to vary independently. Another challenge was that 

the events of interest that are needed to study safety (e.g., crashes) are quite rare, even in 

simulation. In both cases, the basic method described above would have required to 

executes a large number of simulation experiments in order to properly estimate the 

statistics of 𝒀.  

Hypothesis:  𝐸{𝒀|𝑤𝑖𝑡ℎ𝑜𝑢𝑡  𝐴𝑉𝑠} ≠ 𝐸{𝒀|𝑤𝑖𝑡ℎ 𝐴𝑉𝑠}, 
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Since executing a large number of simulations was not feasible even with the use of the 

Amazon Web Services solution, additional restrictions were imposed to keep the number 𝑁 

of simulations experiments low. The restrictions were: 

o In the baseline scenario, within a simulation experiment, all instances of every model 

were allowed to have different parameter values. However, every model instance had 

the same parameter values in all simulation experiment, including the initial conditions 

of the model and the initial location in the map.  

▪ For example, “pedestrian 1” was different than “pedestrian 2” within simulation 

experiment 1. But “pedestrian 1” in simulation experiment 1 was exactly the 

same in simulation experiment 2, and 3, etc. 

▪ Note that this restriction ensure that every simulation experiment yields 

exactly the same results down to exactly the same trajectories for every 

simulated traffic participant. 

• The only exception to the above restriction was the human driver model (HDM) 

because AVs would eventually replace human drivers, so we wanted to explore 

what happened when some HDMs were replaced by AV models. Two types of 

HDMs were created as shown in Figure 5 

 

Figure 5: Restricted Monte Carlo simulation setup. See text for a description. 

 

o In every simulation experiment: Red and Green HDMs appear at the 

same time and location. 

o In every simulation experiment: Red and Green HDMs have different 

parameter values:  𝑅1 ≠ 𝑅2 ≠ 𝑅3 ≠ ⋯ and 𝐺1 ≠ 𝐺2 ≠ 𝐺3 ≠ ⋯ 

o However, 𝑅1 in 𝑆1 = 𝑅1 in 𝑆2 = ⋯ = 𝑅1 in 𝑆𝑁, 𝑅2 in 𝑆1 = 𝑅2 in 𝑆2 = ⋯ =

𝑅2 in 𝑆𝑁,… 

o In contrast: 𝐺1 in 𝑆1 ≠ 𝐺1 in 𝑆2 … ≠ 𝐺1 in 𝑆𝑁; 𝐺2 in 𝑆1 ≠ 𝐺2 in 𝑆2 … ≠

𝐺2 in 𝑆𝑁,… 
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• Approximately 2500 Red HDMs and 250 Green HDMs were considered. Every 

Green HMD instance had only one parameter that was allowed to change: its 

“desired time gap”, which was assumed to be uniform random variable taking 

values between 0.5 seconds and 1.5 seconds. 

• Based on the above restrictions, and assuming statistical independence between 

the Green HDMs, we have that  𝑓𝑋 = (𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.5,1.5))250. 

The AV scenario was set up in exactly the same way. However, in every simulation 1 AV 

model were added with exactly the same initial condition. In total 500 simulation experiments 

were executed in both scenarios, and the statistics of 𝒀 were estimated as described in 

Section 3.1.1. 

3.2 AWS - Simulation execution and procedure 

The simulation has been processed in instances of Amazon Web Services (AWS). To 

performance this task different configurations and services have been used, the following 

list is the main services used during the simulations, but there were more services involve. 

• EC2: “Amazon Elastic Compute Cloud (Amazon Ec2) offers the broadest and 

deepest compute platform, with over 500 instances and choice of the latest 

processor, storage, networking, operating system, and purchase model to help 

you best match the needs of your workload” 

• S3: "Amazon Simple Storage Service (Amazon S3) is an object storage service 

offering industry-leading scalability, data availability, security, and performance.” 

• ECR: “Amazon Elastic Container Registry (ECR) is a fully managed container 

registry offering high-performance hosting, so you can reliably deploy application 

images and artifacts anywhere.” 

• CloudWatch: “Amazon CloudWatch collects and visualizes real-time logs, 

metrics, and event data in automated dashboards to streamline your infrastructure 

and application maintenance.” 

• VPC: “Define and launch AWS resources in a logically isolated virtual network. 

Amazon Virtual Private Cloud (Amazon VPC) gives you full control over your 

virtual networking environment, including resource placement, connectivity, and 

security.” 

This chapter has the following structure:  

1. Define the necessaries resources to be able to deploy the simulations. 

2. Methodology to deploy a simulation. 

3. Methodology to deploy all simulations simultaneously. 
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3.2.1 Resources necessaries 

The first step was defined the resources necessaries to performance the simulation. If the 

simulation has autonomous vehicles (AV) demand more resources that it had not. 

There are a big number of options of the kind of EC2 instances. Is possible consult all kinds 

in the web https://aws.amazon.com/ec2/instance-types/?nc1=h_ls   

• The instance “t2.medium“ was selected to performance the scenarios without 

AVs. Table 2 shows the characteristics of this type of instance. 

Table 2 t2.medium characteristics. Information extract from AWS info 

Instance vCPU 
CPU Credits / 

hour 

Mem 

(GiB) 
Storage 

Network 

Performance 

t2.medium 2 24 4 
EBS-

Only 
Low to Moderate 

• The instance “c5.xlarge” was selected to performance the scenarios with Avs.  

Table 3 c5.xlarge characteristics. Information extract from AWS info 

Model vCPU 
Memory 

(GiB) 

Instance 

Storage (GB) 

Network 

Bandwidth (Gbps) 

EBS Bandwidth 

(Mbps) 

c5.xlarge 4 8 EBS-Only Up to 10 Up to 4,750 

Also, the storage of the instance had been personalized in each case: 

• 8GB for the simulations without Avs. 

• 24GB for simulations with Avs. 

3.2.2 Methodology to Perform a simulation 

To make a simulation, the following steps must be followed: 

1. Hire an EC2 machine (according to the characteristics described in the previous 

section). 

2. Choose the operating system that will work with the machine. In this case, an 

"Amazon Linux x64" image was chosen. 

3. Configure the instance to be able to have access to and from outside. 

4. Install the necessary tools to run the Docker images. 

• Install and configure Docker, Python 3.7 and amazon-linux specific diagnostic 

tools and extras. 

• Configure environment variables so that the machine can access AWS services. 

https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
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5. Configure the Docker-compose file to be able to find the images previously uploaded 

to the ECR and find the resources stored in S3. 

6. Run the simulation. 

7. Wait for the simulation to finish (between 40 min and 2 hours). 

8. Upload the simulation output logs to S3. 

9. Shut down and destroy the machine, to save resources. 

In the project the main objective was run more than five hundred simulations. with this 

methodology it would have been impossible to do all the simulations in time.  

3.2.3 Methodology to deploy all simulations simultaneously. 

After search a possible solution to deploy all simulations simultaneously, the consortium 

decided use Terraform to deploy all simulations simultaneously.  

Terraform is an infrastructure as code software developed by HashiCorp. It allows users to 

define and configure a data center infrastructure in a high-level language, generating an 

execution plan to deploy the infrastructure to cloud service providers. The infrastructure is 

defined using a specific syntax where multiple parameters can be defined. 

1. A customized amazon-linux image (Amazon Machine Images (AMI)) was created, in 

which all the necessary tools to perform a simulation were installed. A system 

monitoring script was created to detect when the machine had finished the simulation 

to auto-shut down and thus conserve project resources. 

2. Terraform was configured to: 

a. Create an instance for each simulation with the previously customized image, 

with the characteristics described in section 3.2.1.  

b. Create the appropriate environment to run the Docker-compose.  

c. Load the environment variables needed to run the simulation. 

3. Since the number of simulations was much higher than the capacities contracted in 

AWS and the number of licenses available for the simulator, Python programs had to 

be developed to launch batches of 25.  

a. The program launched 25 simulations simultaneously (create instances, start 

docker monitor, launch simulation) 

b. Wait 2 hours to be sure that all simulations are finished. 

c. Stop and destroy all instances. 

d. Start again with the next batch. 
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3.2.4 Simulation results download 

A custom script was developed to automate the process of downloading simulations from 

different folders. Due to the large amount of simulations and the size of the data, the script 

is designed to download the simulations one by one, following the same folder structure. 

The script is customizable and can be configured to match a regular expression (regex) or 

a file extension, making it versatile for different types of simulations. This automated script 

allows the partners to download simulations efficiently and effectively, saving time and effort 

in managing large volumes of data.  

The creation of the custom script for downloading simulations automatically by the partners 

was developed for several reasons. Firstly, the sheer volume of simulations generated by 

automotive testing can be massive, resulting in a significant amount of data to be managed 

and processed. Automating the downloading process through a script allows for efficient 

handling of this large data volume, saving time and effort compared to manual downloading. 

Secondly, different partners may require simulations in various formats or with different file 

extensions based on their specific needs. The custom script's ability to be customizable and 

match a regex or file extension makes it highly adaptable to the diverse requirements of 

different partners. This flexibility allows the partners to efficiently download simulations in 

the specific format needed by each partner, streamlining the data sharing process and 

ensuring that the simulations are delivered in the appropriate format for further analysis or 

processing. 

Furthermore, the user-friendly design of the script makes it easy for the partners to utilize it. 

The script's customization options, such as regex or file extension matching, provide a user-

friendly  

 

Figure 6. Inputs required by the script 

interface for partners to specify their simulation results requirements without needing to be 

proficient in coding or scripting. This makes the script accessible to a wide range of users, 

facilitating efficient data sharing and collaboration between the partners. 
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3.2.5 Simulation executions license errors 

The primary objective of the script was to identify any license errors, indicating unsuccessful 

simulation executions, during the iterative process of running multiple simulations in parallel. 

One of the key advantages of the script is that it does not require downloading the simulation 

files, as it directly accesses the AWS S3 bucket and reads the body of the docker_execution 

log file using a GET method. 

The first step in developing the script was to establish a connection with the AWS S3 bucket 

where the simulation files were stored. This involved setting up the necessary authentication 

and authorization credentials to access the S3 bucket securely. Partner’s expertise in 

working with AWS services and APIs was leveraged to ensure a secure and efficient 

connection to the S3 bucket. 

Once the connection to the S3 bucket was established, the script utilized a GET method to 

retrieve the body of the docker_execution log file. This log file contains information about 

the execution status and any errors encountered during the simulation runs. By reading the 

log file directly from the S3 bucket, the script avoided the need to download the entire file, 

which could save time and bandwidth in processing large volumes of simulation data. 

Next, the script parsed the retrieved log file to search for indices of license errors. This 

involved using regular expressions or other string manipulation techniques to identify 

patterns or keywords that indicate license errors. 

Once the license errors were identified, the script generated a report summarizing the 

simulation execution status, including details of any license errors encountered. This report 

could be in a structured format, such as a CSV file or a JSON file, which can be easily 

analyzed and interpreted by the partner’s. 

Figure 7Sample of the results in form of table 
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4. Simulation Results & Analysis 

Once all the models and integration were successfully implemented in the simulation and 

the test runs were executed, different analysis were carried out by each partner. This section 

summarizes the approach that each partner did in Task 2.5 to analyse the experiment 

results. TNO, IKA, TUD, and UNI based their analysis on the metrics they developed in Task 

2.2. Each partner presents below a summary of the techniques applied and a description of 

their analysis objectives, and their analysis results. 

4.1 Analysis of Car-to-Car critical situations (TNO) 

The procedure used by TNO to analyze ca-to-car critical situations was similar to that 

described in Section 3.1.2. As explained in section 3, the goal of the simulation experiments 

was to ascertain whether the present of AVs has an influence on traffic safety. 

Traffic safety is generally measured by metrics that are aggregated of a large area over 

sizeable amount of time (e.g., the number of crashes per 100 000km driven in a country). 

Thus, such metrics could not be computed using the simulation setup developed in WP2. 

Instead, TNO uses a leading indicator of traffic safety, the number of severe traffic conflicts, 

which is known to be statistically correlated with traffic safety indicators [3]. In this study, 

severe traffic conflicts were defined as interactions with a time to collision (TTC) of less than 

1.5 seconds and a post encroachment time (PET) of less than 5 seconds (see [4] for 

definitions). 

A preliminary analysis of the baseline simulation experiments run in the Amazon Web 

Services environment showed that varying the desired time gap, as explained in Section 

3.1.2, did not produce any measurable changes in the number of detectable critical car-to-

car events (in fact there was only minimal trajectory changes in the Green HDMs). On the 

other hand, other project partners reported significant changes in the number of conflicts 

between cars and other traffic participants. As a consequence, to avoid disrupting the 

workflow already underway in the project, TNO opted for running simulation experiments 

locally, using a simplified version of the Amazon Web Services environment. The 

modifications over the setup on Section 3.1.2 were as follows: 

• The map selected was City seven under the low-demand settings: 

o Baseline scenario: 20 cyclists, 320 Red HDMs, 40 PTWs, 200 pedestrian, 80 

Green HDMs (total: 660 participants) 

o AV scenario: 20 cyclists, 320 Red HDMs, 40 PTWs, 200 pedestrian, 40 Green 

HDMs, 40 AVs (total: 660 participants) 

o All models, except for the HDM and AV models, were stock AIMSUN models. 
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• The HDM models only had one variable parameter: the desired vehicle speed. This 

was modeled as a Gaussian random variable with a mean of 50kph and a variance 

of 5kph. 

• The AV model was a modified version of the TNO HDM, with a desired time gap 

constant throughout the (AV) sub-population and smaller than that used by the 

regular HDM. Furthermore, for the AV, the perception error vanishes, and the desired 

speed does never exceed the speed limit. All AV model instances used exactly the 

same parameters in every simulation. 

• 500 hundred simulation experiments were run per scenario 

Figure 8 shows a plot of the estimate of 𝐸{𝒀}, the average number of severe traffic conflicts, 

as a function of the number of baseline simulation experiments used to estimate it. As 

expected, the estimate of 𝐸{𝒀} converges to a constant value as the number of considered 

simulations experiments increases. Note that different colours represent a re-shuffle of the 

simulation experiments used to estimate 𝐸{𝒀}. In general, the baseline number of severe 

conflicts is slightly higher than 122.   

 
Figure 8: Estimates of the mean and variance of the number of severe traffic conflicts present in the 

baseline simulation experiments. The plot show how these estimates change with the number of 
simulation experiments considered. 

Figure 8 also shows estimates of 𝜎{𝒀}, the standard deviation of the number of severe 

conflicts. The variance also seems to converge, although slowly, to a constant value (around 

2) as the number of simulation experiment increases.  
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Figure 9: Estimates of the mean and variance of the number of severe traffic conflicts present in the 
AV simulation experiments. The plot show how these estimates change with the number of 

simulation experiments considered. 

Figure 9 shows the same estimates for the AV scenario simulation experiments. Although 

the estimated mean number of severe conflicts is lower (116), the standard deviation is 

much larger (around 18).  

To understand this change, consider the histograms shown in Figure 10. They show the 

number of simulation experiments as a function of the number of severe conflicts. The top 

histogram corresponds to the baseline scenario. Note that all simulation experiments show 

a similar number of conflicts tightly distributed around the mean (122). On the other hand, 

in the AV scenario, when some of the Green HDMs are replaced by AVs (see description 

above) the effect is split, as shown in the bottom histogram. In many cases the number of 

severe conflicts decreases, but in other cases, just a few, the number of conflicts actually 

increases. The net effect is a reduction of the mean number to severe conflicts to 116, but 

the increase in variance shows that this reductions is not uniform for all experiments. 

This change seems to be related to the type of conflicts present in the simulation 

experiments. Figure 11 show the so-called “violin plots” for three types of severe conflicts: 

rear-end (left graph), lane change (center graph), and crossings (right graph). The first type 

of conflict happens when two cars are too close longitudinally (same lane), the second 

occurs when they are too close while one is changing lanes, and the last type occurs at a 

crossing (recall that “too close” means either a TTC < 1.5 seconds or a PET < 5 seconds).  
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Figure 10: Histograms showing the number of simulation experiments as a function of the number 

of severe conflicts. Top: baseline scenario. Bottom: AV scenario. 

 
Figure 11: Analysis of the type of severe conflict present in each simulation experiment. In all three 
graphs, the left (blue) distribution corresponds to the baseline scenario, while the right (organ) 
distribution corresponds to the AV scenario. Three conflict types were considered: rear-end (left 
graph), lane change (center graph), and crossing (right graph). 

Every violin plot in Figure 11 shows a mirrored, vertical version of the histograms in Figure 

10 but for a specific type of conflict only. Figure 11 shows that the presence of AVs led to a 

reduction in the number of lane change and crossing conflicts, but also to a marked increase 

in the number of rear-end conflicts. 

This basic analysis leads to a preliminary conclusion: although, as mentioned in Section 3, 

it would be difficult to generalize the results of these simulation to the real-world, these initial 

results suggest that AVs could indeed potentially alter the number of conflicts present in 

traffic, both for the better and the worse. More in depth analysis is needed to determine if 

the same results would be obtained when defining differently what a “severe conflict” is, or 

when altering how the AVs behave in traffic.  
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4.2 Pedestrian and bicycle critical situations (IKA) 

As described in deliverable D2.8, the assessment of criticality in interactions between VRUs 

and vehicles are of major interest. Due to the fact, that crashes have a high probability to 

cause severe injuries to pedestrians and cyclists [4]. Ika focused their simulation analysis 

on these critical situations.  

To analyze the simulation results, ika used the following metrics to characterize critical 

scenarios for pedestrian-to-vehicle interactions. 

• Deceleration to Safety Time (DST): 

The DST describes how much an object has to decelerate/accelerate in order to reach the 

conflict point just after the other object has left it [5]. This evaluation metric is suitable for 

scenarios in which the trajectories of the two objects cross and can thus be directly 

transferred to a situation in which a pedestrian crosses the road. 

• Post Encroachment Time (PET):  

PET describes the time difference between a pedestrian leaving the crossing zone and a 

vehicle entering it. In this case, the trajectories of the pedestrian and the vehicle cross. 

• Time Head Way (THW):  

THW describes the time gap to a preceding object. In our application, the interpretation of 

THW is modified so that the pedestrian is a standing object on the road. Thus, the THW 

between the approaching vehicle and the standing pedestrian is evaluated. The calculation 

of the metric is valid as long as the pedestrian is walking on the road. The modified THW is 

here theoretically equivalent to the Time to Collision where the pedestrian has no speed. 

Next to looking at the metrics characterizing critical situations for pedestrians, ika also 

identified critical scenarios in cyclist-to-vehicle interactions by using the metrics described 

below. The simulation analysis was constrained to metrics indicating critical scenarios in a 

longitudinal direction because of the lane-related behaviour of the other road users in the 

simulation.  

• Time to Collison (TTC): 

The remaining time to an imminent collision between a vehicle and a cyclist, if the current 

driving condition (with respect to velocity, direction etc.) does not change. 

• Time Head Way (THW): 

Description of time gap from a vehicle to the preceding cyclist. 

• Deceleration rate to avoid collision (DRAC): 

The rate at which a vehicle must decelerate to avoid a probable collision with a cyclist. 

Equation for vehicles traveling in the same path. 
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• Proportion of stopping distance (PSD): 

The ratio of distance available between two objects and the distance that is required to avoid 

a collision with the maximum available deceleration rate (MADR). MADR depends on vehicle 

type and environmental conditions such as pavement skid resistance.  

The same analysis scheme was used for both VRU models. First, we conducted an 

individual analysis for each metric. As a second step, we performed an overall analysis, 

which focuses on the total number of all critical scenarios occurring in the simulations with 

and without the presence of Avs. (see Section3.1). 

For the individual analysis the sum of all detected situations were analyzed. As shown 

exemplarily in Figure 12 for the pedestrian and in Figure 13 for the cyclist, the values of the 

selected metrics of each situation were plotted. The bars indicate the frequency of 

occurrence while the critical area is highlighted trough the red boxes. These threshold values 

defining critical scenarios are based on the results of D2.6, which has been determined with 

the help of the GIDAS data. The figures show the simulation results of two different 

simulation runs, which are distinguished by blue and brown bars. Compared to the brown 

bars, the blue bars represent a much more critical traffic situation. This is due to the fact that 

the brown histogram is shifted to a less critical area compared to the blue histogram, 

resulting in fewer interactions in the red area. In addition to the histograms, the specific 

numerical values are also analyzed. For this purpose, the total numbers of identified critical 

scenarios and its percentage in relation to all identified situations are considered. This allows 

a direct evaluation of the changes in the number of critical interactions and whether there 

are more conflicts in general due to parameter variations. 

 
Figure 12: Analysis Overview of two Simulations for Pedestrians 
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Figure 13: Analysis Overview of two Simulations for Cyclists 

For the overall consideration, we conducted descriptive analysis on the absolute frequency 

of critical situations found in the simulations with and without AV as described in Section3.1. 

A situation was classified as critical if it was characterized as critical by at least one or more 

metrics. Figure 12 (Pedestrians) and Figure 13 (Cyclists) show the descriptive distribution 

(mean, median, quartiles, outliers) of the critical situations’ frequency (y-axis). The x-axis 

indicates the number of simulations carried out. 
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Figure 14: Overall Analysis of the Monte Carlo Simulation for Pedestrians 

 

 

Figure 15: Overall Analysis of the Montecarlo Simulation for Cyclists 

Descriptive differences in the data can be seen for both the pedestrians and the cyclists. 
First, it is noticeable that for both samples, the variance of the data is descriptively larger in 
the simulations with AVs than in the simulations without AVs. However, the cyclist data show 
descriptively little difference in the measures of central tendency (mean/median). In contrast, 
looking at the pedestrian data, a different situation can be seen. In these data, it is noticeable 
that the median and mean differ greatly. This can be explained by the high number of outliers 
to which the mean is susceptible. The median, on the other hand, is statistically robust to 
extreme values. Subsequently, the arithmetic mean descriptively indicates a stronger 
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difference between the two conditions, while examination of the medians indicates small 
differences in the number of critical events between simulations with and without AVs. It can 
be assumed that certain parameter variations of the different behavior models led to many 
critical situations, while the majority of the simulations show a similar frequency.  

This shows how strongly different parameter variations and combinations of the different 
road users influence the number of critical situations occurring. When interpreting the data, 
it is therefore essential to take a differentiated look at the parameter variations carried out in 
order to be able to make reliable conclusions. 

4.3 Driving risk of car-to-car interaction (TUD)  

4.3.1 Analysis of the two simulations   

Two simulation datasets are employed to conduct safety analysis. The first simulation set 

includes human driving (HD) vehicles with normal behaviours, while the HD vehicles have 

distracted behaviours in the second set. The simulation period is 10 minutes for both 

datasets, and an overview of the two simulation datasets is displayed in Table 4.   

Table 4. General information in the two simulation datasets. 

Dataset No. cars No. car pairs No. PDRF calculation Analysis time (s) 

D1-normal 256 898 52,646 265.67 

D2-distracted 260 926 40,952 182.53 

As shown in Table 4, despite the difference of human driving behaviours, the two datasets 

(D1 and D2) contain a close number of cars, indicating a similar traffic density. To speed up 

the simulation analysis, we set a distance threshold as 100 metres for car-car interactions. 

Given ego car A, if a surrounding car B has a minimum relative distance with car B less than 

100 metres, the two cars (A, B) are identified as a pair. Note pairs (A, B) and (B, A) are 

different, as the calculation of PDRF (the safety metric developed by the project partner TU 

Delft) depends on whether a car is regarded as an ego or surrounding one.  

We calculate PDRF for each pair at each time step when the relative distance of the pair is 

less than 100 metres. Although the number of car pairs in D1 is slightly less than that in D2, 

more PDRF calculations are conducted for D1, leading to overall larger analysis time. 

However, real-time implementation for safety evaluation with PDRF is still promising, as the 

simulation period is 600 seconds, which is 2 or 3 times of the analysis time. 



 

 

SAFE-UP D2.13: Analysis of simulation results and 
identification of future safety-critical traffic interactions update  

 

   

 

This project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under Grant Agreement 861570. 

 
Figure 16 CP distributions over two datasets. 

 

 
Figure 17 Safety metric PDRF distributions over two datasets. 

For convenience, we only report the maximum collision probability (CP) and corresponding 

PDRF values for each pair. The CP and PDRF distribution comparison results over D1 and 

D2 are illustrated in Figure 16 and Figure 17, respectively. Clearly both figures present the 

same trend between D1 and D2, i.e., car-car interactions in D1 are more risky than that in 

D2. This is reasonable, as the human drivers in D2 are simulated with distracted behaviours. 

We also observe that for the same dataset, the distributions of CP and PDRF are different. 
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Figure 18. CP and PDRF distributions comparison over D1. 

 

 
Figure 19 CP and PDRF distributions comparison over D2. 

For clearer comparison, we plot the distributions of CP and PDRF in the same frame, both 

for D1 and D2 in Figure 18 and Figure 19, respectively. Indeed, in both datasets, the 

distributions of PDRF are more concentrated.  This is because PDRF is calculated as a 

product of a CP and a crash severity, where the severity is relevant to the vehicle mass and 

relative speed between the two cars. Thus PDRF has a larger distribution range; when 

PDRF is evenly divided into 10 subintervals, the first interval then has a higher distribution 

probability. In conclusion, the CP distributions have clearer physical meanings and easy to 

interpret for safety analysis. For PDRF distributions, a safety-critical threshold matters. 
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Nevertheless, PDRF contains not only CP but also crash severity information and is 

promising to accurately estimate the driving safety for car-car interactions. 

4.4 PTW critical analysis results (Unifi)  

The Analysis of PTW-car critical interactions was done with the simulations conducted for 

the Monte Carlo method explained in Section 3. Thus, this analysis identified the high-risk 

PTW-car interactions for both the baseline scenario (without the presence of automated 

vehicles) and the AV scenario (including automated vehicles). The conditions of the 

simulations for each scenario (network, number of simulations, number of different agents 

and values changed in the parametric models) are those defined in Section 3. The risk 

metrics used to identify high-risk PTW-car interactions is the Crash Probability Index for 

Motorcycles (CPIM). How the CPIM is computed and the methodology for the analysis of 

CPIM using the output of the simulations are defined in deliverable D2.14. 

4.4.1 CPIM Risk Analysis  

The CPIM analysis identifies PTW-car interactions with a high risk of crash (i.e., near-crash 

or crash) to assess traffic safety. As commented in previous sections, this type of events are 

quite rare in real-life, so the possibility of finding a crash in a realistic simulation of traffic is 

very low. Figure 20 shows how the risk metrics using the CPIM index identified cases where 

the interaction PTW-car was completely safe in 99.2% and 99.4% of the events for the 

simulation without (baseline) and with AV respectively.  

The CPIM identified just over 100 cases with high crash risk (CPIM > 0.8) for each condition 

in a total of 500 simulations involving more than 50,000 PTW-car interactions, making it 

difficult to conduct a reliable comparison between the two conditions (Figure 21). Overall, 

PTW-car interactions with high crash risk accounted for 0.3% and 0.2% of the cases in the 

simulations without and with inclusion of AV respectively. Based on this result, the inclusion 

of AVs in the simulations developed in AIMSUN Next did not add significant changes in the 

PTW-car interactions in terms of increase/reduction of high crash risk cases.  

It is important note, that a few of the planned simulations with AVs were not completed due 

to some errors during the simulation, so despite having more agents involved (same quantity 

of human driven vehicles, PTWs, bicycles and pedestrians plus the new autonomous 

vehicles) the total number of PTW-car interactions is slightly lower with AVs (52,398 cases) 

compared to the total case of the baseline conditions (56,721 cases). 
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Figure 20. Distribution of CPIM (percentage) after running 500 simulations with baseline condition 
(No-AV) and with the condition including Avs. Unavoidable crash is considered for CPIM =1. High 
Risk of crash for CPIM > 0.8. 

 
Figure 21. Frequency distribution of CPIM (quantity of events) after running 500 simulations with 
baseline condition (No-AV) and with the condition including AVs. High Risk of crash for CPIM > 0.8. 

4.4.2 Mixed Index Risk Analysis: Fuzzy Inference Systems model 

In order to understand the variance between simulations in terms of risky PTW-car 

interactions, we decided to apply a new mixed index (MI) risk metric based on fuzzy 

inference system (FIS) models using time-to-collision (TTC) and Time Gap (TG) between 

the PTW and the leading car as input. This MI risk metric follows the methodology of 

previous studies [6][7]. or the case of our analysis, which explores PTW-car interactions with 

car-following scenario, the inclusion of the TG brings a potential hazard component to the 

TTC (more related to a real and imminent danger), which increases the number of cases 

considered unsafe without the need to end up becoming a crash or near-crash. 

Thus, MI risk metric is less reliable than CPIM in identifying actual crash events, but it is able 

to identify medium risk events with interactions that could potentially become high risk in 

case of changing conditions (e.g., possibility of rear-end collision if the car in front brakes 

sharply due to a short time gap of the PTW during car-following). The fuzzy rules of the 

model connecting TTC, TG and risk in the PTW-car interaction are based on the 
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relationships defined in previous studies (Nadimi et al., 2016; Vogel, 2003). Table 5 and 

Figure 22 show the fuzzy rules and membership gaussian functions for the defined TTC and 

TG inputs respectively. 

Table 5 Fuzzy rules for MI risk determination of PTW-car interactions based on TTC and TG.  

  TG: VS TG: S TG: M TG: L TG: VL 

TTC: 

VS 
MI RISK: VS - - - - 

TTC: S MI RISK: VS MI RISK: S - - - 

TTC: M MI RISK: S MI RISK: M MI RISK: M - - 

TTC: L MI RISK: M MI RISK: M MI RISK: L MI RISK: L - 

TTC: VL MI RISK: L MI RISK: L MI RISK: VL MI RISK: VL MI RISK: VL 

VS: very small; S: small; M: moderate; L: large; VL: very large; ‘-’: not possible. Source: Nadimi et al (2016) 

 

 

Figure 22. Gaussian membership functions for TTC and GT 

After applying the MI risk to the interacttions for the 500 simulations without/with AVs, the 

threshold that could classify the different levels of risk was determined with the Cumulative 

Distribution Function (CDF). Figure 23 shows the CDFs and the three different thresholds 

defined, where the unsafe events were determined by MI risk > 0.8, which represents more 

than Percentil 97 for both conditions. The thresholds of MI Risk 0.4 and 0.6 were also added 

in case the planned analysis required to increase the subsample with cases considered not 

completely safe. 
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Figure 23. Cumulative Distribution Function (CDF) of MI risk for 500 simulations. Dotted lines 

represent the different thresholds related to risk PTW-car interactions. 

The results of the new MI risk metric for the 500 simulations and the te two conditions of the 

study are showed in Figure 24 and Figure 25. The MI Risk identified more than 1500 unsafe 

events (MI Risk > 0.8) for each condition in a total of 500 simulations. Overall, unsafe PTW-

car interactions accounted for 2.5% and 2.9% of the cases in the simulations without and 

with inclusion of AV respectively. Based on this result generated with MI Risk (in contrast to 

the results with CPIM), the inclusion of AVs in the simulations developed in AIMSUN Next 

increased overall unsafe PTW-car interactions by 0.4% compared to the baseline without 

AVs, representing a relative increase of 16% more unsafe cases. 

 
Figure 24. Distribution of MI Risk (percentage) after running 500 simulation with baseline condition 

(No-AV) and with the condition including AVs. Unsafe Event for MI Risk > 0.8. 
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Figure 25. Frequency distribution of MI Risk (quantity of events) after running 500 simulation with 
baseline condition (No-AV) and with the condition including AVs. Unsafe Event for MI Risk > 0.8 

4.4.3 Monte-Carlo Results (PTW-car interactions) 

As only one high crash risk case (CPIM > 0.8) was identified in every three simulations, it 

was not feasible to perform the Monte Carlo analysis with the variation of crash or near-

crash cases. For this reason, we used the variation between the number of cases that 

exceeded three defined thresholds of the MI risk metric developed with a fuzzy model, to 

determine at what point (number of simulations) the number of unsafe PTW-car events 

stabilized. For this purpose, the average and variance were calculated for each new 

simulation performed. Thus, the procedure followed was to add the cases of each new 

simulation to the cases of the previous simulations, and then calculate the new variance 

value and the new average number of unsafe PTW-car interactions per simulation. 

Figure 27 shows the curve of the variance as the number of simulations increased. As can 

be seen, in the baseline condition (no AVs) the variance is minimal from the first simulations, 

from which it can be deduced that the variation in the time gap parameter of the human 

driver model had little influence in bringing about changes in the number of unsafe events 

between simulations. On the contrary, the simulations with the AV condition experienced 

some variability for the cases identified with more conservative thresholds (0.4 and 0.6) that 

tends to stabilize between 200 and 300 simulations, although from the first simulations the 

variance is already very low. In the case of events considered unsafe (MI Risk > 0.8), the 

number of events found oscillates between 3 and 4 per simulation, so the variance found is 

very low from the beginning.  
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Figure 26. Variance of cases identified as the number of simulations increased 
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Figure 27. Variance of cases identified as the number of simulations increased 

 

 

Figure 28 shows the trends of the average number of cases encountered above the different 

thresholds defined, where it can be seen how the variability of the simulations with VAs 

included is higher than that without VAs. It is important to note that, considering that the 

simulations including AVs increased the number of cars in the simulation network, the 
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number of interactions also increased and, consequently, the probability of having more 

unsafe cases also increased. Thus, the results in Figure 27 help to understand the variance 

of the results as the number of simulations increases, but cannot be used to directly compare 

the two study conditions. For a direct comparison it is necessary to use the results in Figure 

20 and Figure 24 already discussed. 

  

Figure 28. Average of cases identified per simulation as the number of simulations increased 

As a conclusion, the 500 simulations following the Monte Carlo method for two conditions 

(collision risk with/without inclusion of AVs) in the network with mixed traffic (cars, PTWs, 

bicycles and pedestrians) indicates that the values obtained from the MI risk metric analysis 

are stable after 200 simulations. Therefore, although the 500 simulations are not sufficient 

to analyze events that rarely occur in a simulation (i.e. crash or near-crash), they do 

guarantee reliable results if the objective is to evaluate the probability of potentially unsafe 

interactions under the two study conditions. 
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4.5 Av scenario analysis (IDIADA)  

In the study, 500 simulations were conducted using an automated vehicle in the presence 

of pedestrians and powered two-wheelers. The purpose of these simulations was to analyze 

the behavior of the automated vehicle's algorithm in critical situations that could potentially 

lead to malfunctions or errors. 

The simulations were designed to replicate real-world scenarios in which an automated 

vehicle may encounter challenging situations involving pedestrians and powered two-

wheelers. These scenarios included scenarios such as pedestrian crossing, and other 

complex traffic situations. The simulation environment considered various factors, such as 

road geometry, traffic flow, and sensor data that the automated vehicle would perceive. 

The simulations were executed multiple times to obtain a statistically significant sample size 

of 500 simulations, which allowed for a comprehensive analysis of the automated vehicle's 

performance in different scenarios. The simulations varied in terms of input parameters to 

capture a wide range of potential scenarios that the automated vehicle may encounter in 

real-world driving conditions. 

The analysis focused on identifying any potential critical situations or scenarios in which the 

automated vehicle's algorithm could potentially malfunction or make errors. These could 

include scenarios where the vehicle failed to detect a pedestrian or powered two-wheeler, 

misjudged their movements, made incorrect decisions, or exhibited unsafe behavior. By 

analyzing the simulations from the perspective of the automated vehicle, the study aimed to 

identify potential areas of improvement in the algorithm's performance and safety. 

The analysis revealed that the automated vehicle algorithm was not as mature as anticipated 

in terms of decision-making and behavior planning. Several factors were identified as 

responsible for these limitations. 

One key factor was the coexistence of different behavioral models within the simulation 

environment. With multiple road users, including pedestrians and powered two-wheelers, 

exhibiting diverse behaviors, the algorithm struggled to accurately predict and respond to 

their actions. The lack of clear understanding between the behavioral models of different 

road users led to challenges in decision-making and behavior planning for the automated 

vehicle. 

Another challenge arose from unexpected traffic signaling situations, such as intersections 

with stop signs in each incoming lane. The algorithm applied a right-hand rule, but it 

encountered malfunctions due to the unpredictable behavior of other actors, leading to 

uncertainties and errors in decision-making. 

The long flow of pedestrians in certain scenarios also posed challenges for the automated 

vehicle. The conservative programming of the algorithm led to prolonged waiting times as 

the vehicle prioritized pedestrian safety. This resulted in delays and disruptions to the flow 

of traffic, affecting the efficiency and performance of the automated vehicle. 
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Furthermore, the conservative nature of the automated vehicle's programming sometimes 

caused pedestrians to get stuck in a particular area, leading to accumulations and further 

delays. The vehicle's cautious approach to avoid potential collisions resulted in extended 

waiting times until sufficient clearance was detected, further impacting the vehicle's 

performance. These situations can be categorized in the most common problems as follows: 

4.5.1 Scenario vehicles ignoring AV presence 

It was found in multiple cases where the vehicles surrounding the AV were overlapping the 

AV, even not respecting sometimes the traffic lights, and moving laterally without modifying 

their heading.  

These situations reflect a leak of maturity on the interaction between scenario actors, and 

meanwhile are expected to happen the planning algorithm hasn’t been tested so deep in the 

scope of this project to manage these situations.  

 

Figure 29. vehicles ignoring AV presence 

4.5.2 The AV is stuck for the rest of the simulation 

There were multiple cases where the AV got stuck during the rest of the scenario without 

any external vehicle interaction. Among the reasons, the main one is the low maturity of the 

AV algorithm behavioral model to manage complex digital maps and deal with this 

unexpected situation. 
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 For instance, below we can see an example where the AV found a “ghost” junction; We 

found out that these situations can be avoided properly managing them.  

Figure 30. the AV found a “ghost” junction 

4.5.3 Crosswalks management 

Crosswalks have been a conflictive spot, because our AV had to interact with the pedestrian 

model, and our behavioral model towards pedestrians is too basic and conservative, leading 

to situations of the AV being stopped for too long or during the rest of the scenario.  

 
Figure 31. the pedestrian model accumulating too many pedestrians 
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In figure 31 can be seen an example of the pedestrian model accumulating too many 

pedestrians in the same spot near a crosswalk and confusing the AV, which leads to a 

permanent stop until there is full clearance. These situations are something that can happen 

in the real world and shall be improved in the AV behavioral models. 

4.5.4 Junction management 

Another conflictive spot are junctions, mainly the junctions that don’t have a clear priority 

established, e.g. “Four road junctions with a STOP in every road”. Where the AV had to 

establish the right-hand rule, but since other actors are working together these rules should 

be very well defined for all models.  

As the example below it can be seen that these situations led to other actors invading the 

junctions while the AV was on Drive mode, leading to the AV getting stuck for the rest of the 

scenario. There are some cases that the AV algorithm can manage and continue after the 

conflictive spot, and other ones that are simply breaking the algorithm state machine. The 

behavioral model shall be deeply tested for this conflictive situations. 

 

Figure 32. other actors invading the junctions while the AV was on Drive mode 
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5. Conclusions 

Task 2.5 had to achieve an ambitious objective: to perform a set of simulations to find out 

the safety critical scenarios that we will encounter in mixt traffic in the future.  

The activities in this task consisted in defining a methodology to plan the execution of the 

simulations (a necessary activity that was unassigned in the project proposal), define the 

parameters that needed to change during the different simulations (aggressive or standard 

driver, standard PTW, aggressive PTW, pedestrian and cyclist attention to the surroundings, 

AV penetration rate, etc.), define the batch of simulations for each run, and analyse the 

simulations performance and their results. Below, you can find the main conclusions of each 

study that was carried out in Task 2.5 

5.1 Car-to-car conflicts (TNO)  

The basic comparative analysis performed in the framework of the Monte-Carlo method 

described in Section 3.1.2 leads to a preliminary conclusion: although it would be difficult to 

generalize the results obtained via the simulations to the real-world, the initial results 

suggest that the presence of AVs could indeed alter the number of conflicts present in traffic, 

both for the better and the worse.  

It was observed that some conflict types increased (rear-end conflicts) while other types 

decreased (lane changes, crossings). It is not clear at this point whether these results would 

be replicated if, for example, the thresholds on TTC and PET used to define severe conflicts 

were changed, or if the behavioral rules for AVs were altered, or if the number of traffic 

participants increases. Future projects should explore more fully these variations.  

5.2  AV model performance conclusions  

Significant effort was put into establishing a pipeline for parallel simulation in AWS, involving 

multiple partner models, to assess the limitations of automated vehicle algorithms. Through 

these simulations, valuable insights have been gained, particularly in identifying the areas 

that require special attention and reinforcement in the automated vehicle algorithms. These 

areas include the interaction with behavioral models, as well as the need to enhance the 

interaction between different algorithms operating in the same scenarios.  

Furthermore, an important aspect that has emerged from the development and design of 

automated vehicle algorithms is the need to account for completely unexpected situations, 

and to create robust behavioral models that can handle worst-case scenarios, such as 

prompting the driver to take over control of the vehicle.  
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5.3 PTW-to-car conflicts 

The work conducted has been able to provide new information to understand more about 

PTW-car interactions, the effect of different parameters related to driving behaviour and the 

probability of critical events in a realistic environment such as the one developed in the 

simulations with the AIMUN Next platform. The analysis of the effect of AV inclusion on the 

safety of PTW-car interactions did not show large differences when compared to the 

baseline condition (no-AVs). PTW-car interactions with high crash risk accounted for 0.3% 

and 0.2% of the car-following events found in the simulations without and with inclusion of 

AV respectively, and unsafe PTW-car interactions with potential risk of collision accounted 

for 2.5% and 2.9% of the cases without and with inclusion of AV respectively. 

Varying over the simulations the desired time gap of the human drivers' vehicles, as 

explained in section 3.1.2, resulted in small changes in the number of PTW-car critical 

events. Therefore, the 500 simulations were not sufficient to analyse the collisions or near-

collisions identified by the CPIM metric using the TTC, the speed of the vehicles and the 

distribution of the braking ability of the motorcycle riders. In contrast, if the objective is to 

assess the probability of potential unsafe interactions in the two study conditions as a 

surrogate safety indicator, the 500 simulations performed following the Monte Carlo method 

on the network with mixed traffic indicated that the values obtained from the MI risk metric 

analysis for PTW-car interactions (based on TTC and Time-Gap) were stable after 200 

simulations. 

For a better understanding of PTW-car interactions and the effect of including AVs in 

collisions and near-collisions, the findings of our work suggest for future studies to include 

a wider range of variation of parameters such as time gap or right-of-way violation in human 

drivers of cars and motorcyclists. 

5.4 Pedestrians and Cyclists 

In this work package, ika focused on the development of behavioral models for cyclists and 

pedestrians. VR simulators were developed to calibrate and verify the models, so that the 

relevant behavioral characteristics could be investigated in the context of subject studies. 

By integrating these models into the shared simulation environment consisting of various 

road users, critical scenarios between VRUs and vehicles could be identified using selected 

metrics and related thresholds.  

Simulations have shown that the specific parameterization of VRU behavior produces 

corresponding behavior in the simulation. For example, restricting pedestrian visibility 

generally increased the number of critical incidents. The Monte Carlo simulation clearly 

showed that replacing human drivers with AVs influences the number of critical situations. 

Whether this has a negative or positive effect depends on the specific model parameters for 

each simulation.  
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In further studies, it is important to focus on VRUs as they are the most vulnerable to 

collisions with future AVs. Especially the future challenges regarding AVs in urban areas 

require the identification and analysis of edge cases. A key aspect is to create a validated 

traffic simulation that serves as a reference or baseline situation. The challenges here are 

mainly in the ground truth data and the correlation of the individual model parameters to 

each other, so that the behavior in the real world can be reproduced through stochastic 

variation of the parameters. Subsequently, the effect of Avs or specific functions in future 

traffic scenarios can be investigated in detail based on the validated reference simulation. 

5.5 Challenges and lessons learned  

The overall achievement of the T.2.5 task was in line with the grant agreement, the 

methodology defined was implemented, the models developed in the other tasks were 

integrated in a platform and simulations were executed and analyzed.  

On the other hand, several challenges were faced and activities took much bigger effort than 

planned, the definition of the model’s parameters that needed to be changed in the 

simulations took several loops and modifications to the models that were already finished 

and rework on the scripts to run the simulations. Also, the computational platform over which 

the simulations were run was changed in mid-2022 due to the need for larger computational 

power. The simulation system is now hosted on Amazon Web Services, a migration with 

significant technical challenges, that was unavoidable to address the necessary increase of 

AV rate penetration and the large amount of simulation runs needed to obtain the expected 

outcomes  

All these unexpected challenges were solved but limited the time and resources available 

for the final step which was performing a comparative analysis between the baseline with 

no AV to an elevated big penetration rate of AV. Several batches of simulations were done, 

the starting point was a set of 100 simulations, and it increased to up to 500 simulations. But 

each time a set of simulation was finished we found several things to improve on models or 

on the performance to the simulation.  

Due to time and resources, the work planned in the grant agreement had been finished with 

several analyses but the results had not been enough to provide a clear picture of future 

safety-critical situations. The work related to improving the models and the parameters of 

the simulation is a never-ending cycle of improvements.  

It is recommended that the community sets up a follow-up project focused on continuing the 

work in this work package, re-using our simulation platform. Such project should support the 

collection of the data necessary to calibrate and validate the simulation environment so it 

becomes a true digital twin of reality. It should also help improve the simulation models 

developed in this project, and perform larger and longer batches of simulations to fully 

explore the possible future safety-critical situations in mixed traffic.  
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Appendix 

6. Manual for safety metric PDRF programme developed 

at TU Delft 

6.1 Introduction  

This manual is created to help SAFE-UP project partners and other potential users to 

understand and use the safety metric the probabilistic driving risk field (PDRF) programme 

developed by SAFE-UP partner TU Delft, for car-car interaction risk assessment. Detailed 

information of PDRF is referred to relevant SAFE-UP project deliverables. 

6.2 Two programs  

PDRF_fzp_process.py  

Purpose: to calculate PDRF value for every vehicle pair at each time step, and output the 

maximum PDRF value for each vehicle pair. 

Required packages: sys, numpy, shapely, quadpy, time, math, mat4py 

Input: trajectory file generated from the AIMSUN traffic platform. The supported file format 

is *.fzp. 

The definition of the format is as follows. 

VehNr: Vehicle ID  

LVeh: ID of the next vehicle downstream  

Type: Vehicle Type ID 

VehTypeName: Vehicle Type Name  

Length: Length [m]  

t: Simulation Time [s]  

a: Acceleration [m/s^2] during the simulation step  

v: Speed [m/s] at the end of the simulation step  

DesLn: Desired Lane (by Direction decision)  

Grad: Gradient [%] of the current link  
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ToD: Simulation Time as Time of Day [hh:mm:ss]  

DistX: Total Distance Traveled in the Network [m]  

WorldX: World coordinate x (vehicle front end at the end of the simulation step)  

WorldY: World coordinate y (vehicle front end at the end of the simulation step)  

WorldZ: World coordinate z (vehicle front end at the end of the simulation step)  

RWorldX: World coordinate x (vehicle rear end at the end of the time step)  

RWorldY: World coordinate y (vehicle rear end at the end of the time step)  

RWorldZ: World coordinate z (vehicle rear end at the end of the time step)  

x: Distance from the start position of the current section or turn the vehicle is in to the front 

part of the vehicle [m] at the end of the simulation step  

y: Lateral position relative to middle of lane (0.5) at the end of the simulation step 

 
Example of the *.fzp file. 

Output: the maximum PDRF value for each vehicle pair based on the input file. The saved 

output format file is *.mat.  
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Example of the *.mat file. 

How to use  

step 1: locate to the directory including the python program and the input file  

step 2: run the following python command (either a or b) in the terminal   

a. Python PDRF_fzp_process.py ( 

(With default input&output files: ‘vehicles_hd_normal.fzp’, ‘results_output.mat’)  

b. Python PDRF_fzp_process.py *.fzp *.mat  

(With specific *.fzp input file and *.mat output file) 

 

PDRF_analysis.m 

Purpose: to illustrate the safety metric results. The .m file is self-explained and easy to 

understand.  

Included functions in PDRF_fzp_process.py:   

get_PDRF(): the main function to calculate the DPRF value for each vehicle pair at each 

time step  

prob_dense_fun(): the probability density function used to calculate the collision probability   

reachable_sur(): to calculate the reachable space of the surrounding vehicle  

frame_trans_gloabl_to_body(): coordinate transfer function   

frame_trans_body_to_global(): coordinate transfer function 
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Example of the results 

 

Figure 1. CP distributions over two datasets. 

 

 
Figure 2. Safety metric PDRF distributions over two datasets. 
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