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Executive summary 
The SAFE-UP project aims to proactively address the novel safety challenges of the future 
mobility systems through the development of tools and innovative safety methods that lead 
to improvements in road transport safety.  

Future mobility systems will rely on partially and fully automated vehicles to reduce traffic 
collisions and casualties by removing causal factors like driver distraction, fatigue or 
infractions and by reacting autonomously to emergency situations. On the other hand, they 
may introduce new collision risk factors or risky behaviours when interacting with other traffic 
participants . 

SAFE-UP’s Work Package 2 will further the understanding of the impact of vehicle 
automation technologies on safety by leveraging newly developed behavioural traffic 
simulation tools. These tools will allow one to simulate specific road networks with a variable 
proportion of automated vehicles to non-automated traffic participants (including human-
drivers, pedestrians, cyclists, and powered two-wheelers). The simulation models will be 
detailed enough to realistically recreate the effects of unexpected events (like surprise cut-
ins). In this way, one will be able to determine whether these technologies induce changes 
(positive or negative) in surrogate indicators of traffic safety.  

An important surrogate indicator of safety is the occurrence of safety-critical interactions in 
different driving scenarios. Building on the workplan laid down on the first version of this 
report (Deliverable 2.5), each partner from Task 2.2 provides a detailed description of the 
severity metrics they developed and outline their plans to use these metrics in Task 2.5. 

A complete account of these metrics can be found in Section 2, and the partners’ main 
conclusions and recommendations can be found in Section 3. A short overview of the work 
is provided here: 

• TNO developed two types of metrics for motor vehicle interactions based on two 
separate techniques: unsupervised anomaly detection and driver profiling. The 
former is best suited for analysing highway interactions while the latter works best 
for urban interactions. 

• TUD developed a metric for motor vehicle interactions based on artificial field 
theory. The metric, called probabilistic driving risk field, was calibrated using NDD 
data and validated using simulation studies and NDD data. TUD showed that their 
metrics can more accurately predict crashes than time-to-collision-base 
predictors. 

• IKA analysed existing surrogate metrics of safety developed to assess motor 
vehicle interactions to understand their suitability in characterizing VRU 
interactions. Along its own metric for pedestrian interactions (deceleration to 
safety time), IKA recommended a number of metrics to characterize pedestrian 
and cyclist interactions. 
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• UNI developed a new metric to characterize longitudinal interactions for PTWs 
called the motorcycle crash potential index. This metric was then used to identify 
critical events in naturalistic driving data. 

 
Through this work, a number of common challenges and conclusions were identified: 

• There is limited access to well-processed naturalistic driving data that can be used 
to calibrate and validate severity safety metrics. 

• There is no ground-truth for severity metrics, which makes it hard to compare the 
outcomes of specific metrics in absolute terms. For instance, two metrics based 
on completely different principles could declare the same interaction as critical 
while awarding that interaction very different severity values.  

• A comparative analysis of several severity metrics should be conducted across 
the EU and an agreement or convention should be reached with multiple 
stakeholders (OEMs, government regulators, academia, etc.) on how 
criticality/severity should be defined and measured. 

• The aforementioned convention should lead to the creation of a “severity ground 
truth”. Since such a ground truth would be location based, a concerted effort 
should be made to acquire NDD from enough representative locations. 

Finally, the work in T2.2 yielded high-quality results that have been documented in at 
least two journal publications and one conference paper. 
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1. Introduction 
1.1 The EU Project SAFE-UP   

The SAFE-UP project aims to proactively address the novel safety challenges of the future 
road mobility environment by developing tools and innovative safety methods, leading to 
improvements in road transport safety.  

Future mobility systems are expected to make use of vehicles with full or partial automation 
of the driving task, the so-called SAE L3/4/5 vehicles (SAE, 2018). By supporting (or even 
replacing human) drivers during the driving task, such vehicles may help improve road safety 
by removing some of the known sources of collisions (e.g., driver distraction) or by taking 
control during critical situations. On the other hand, automated vehicles may introduce new 
collision risk factors (e.g., increased distraction during transition of control) or induce new 
risky behaviours in other traffic participants (Hamilton, 2019). 

The true impact of vehicle automation technologies on road safety will become apparent in 
the decades to come, as it depends on social and market trends that are difficult to forecast 
(like technological developments in sensors for automated vehicles, market penetration and 
acceptance of automation technologies, etc.).  

Through the work in Work Package (WP) 2, SAFE-UP will further the understanding of the 
future impact of vehicle automation technologies by leveraging newly developed behavioural 
traffic simulation tools. These tools, currently under development by SAFE-UP’s partners in 
Tasks (T) 2.3 and 2.4 (see Deliverables (D) 2.9-2.12 for details), will allow one to simulate 
specific road networks with a variable proportion of vehicles equipped with automation 
technologies. By analysing the simulation results, one will be able to determine whether 
these technologies induce changes (positive or negative) in indicators of safety.  

As explained in the first version of this report (D2.5 “Description metrics for traffic 
interactions”), an important indicator of safety is the occurrence of safety-critical driving 
interactions or their precursors (i.e., interactions that have the potential to become safety-
critical). The impact on safety can also be seen as a change on the number of traffic 
participants interacting safely in traffic.1  

T2.2 aimed at identifying and developing metrics that allow one to classify driving 
interactions as either safe or as safety-critical (these are the two extremes of the “severity” 
spectrum). Such metrics can be used to develop collision avoidance algorithms, to test the 
capabilities of specific vehicle automation technologies or, as in the case of T2.5, to identify 
safety critical interactions in micro-simulations.  

 

 

 
1 As shown in Figure 1, interactions not declared “safe” are not directly “safety-critical” (and vice 
versa).  
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This document presents a detailed description of several new metrics developed in this 
project by different partners according to the work plan outlined in D2.5. These metrics play 
an important role in the contribution of WP2 to the goals of the project. 

1.2 Objective of this Report 

This report is the final version of D2.5 “Description metrics for traffic interactions”, which 
provided the following information:  

• An extensive overview of severity metrics from the perspectives of motor vehicles, 
PTWs (powered two-wheelers) and VRUs (vulnerable road users) 

• Recommendations of which metrics to use to identify safety-critical interactions 
and gaps in the literature 

• Initial work plans for the T2.2 partners.  
Deliverable 2.14 builds on this foundation to provide the following information: 

• A detailed description of the severity metrics developed by different T2.2. 
partners. 

• Preliminary plans on how these metrics would be used in T2.5 to analyse 
micro-simulation results produced by the simulation environment developed 
in T2.4.2 

1.3 Report Organization 

The rest of the report is organized as follows: Section 2 is the main section of this document. 
It provides a basic terminology, a well-established approach to relate traffic interactions and 
safety, which helps the reader to understand the coverage of the different metrics developed 
by the partners, and a list of common surrogate metrics of safety available in the literature. 
It also contains the details on the metrics developed by the T2.2 partners. This is followed 
by our conclusions and recommendation in Section 3.  

  

 

 

 
2 A detailed description of the initial simulation analysis plans from T2.5 are presented in 
D2.8 “Analysis of simulation results and identification of future safety-critical traffic 
interactions”. 
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2. Partner Contributions 
This section presents the metrics developed by each partner in T2.2 (TNO, TUD, IKA, 
UNIFI). As explained below, each partner has focused their work on different kinds of 
interactions: Motor vehicle interactions (TNO, TUD), VRU interactions (IKA), and PTW 
interactions (UNI).  

2.1 Basic Terminology and Positioning of Partner’s Work 

For convenience, this section provides a shortened version of the common terminology 
presented in D2.5 that is used by all partners to describe their work. It also provides a view 
on how to position the work by the T2.2 partners from the metric application point of view; 
and a brief list of common surrogate metrics of safety used throughout the text. 

2.1.1 Microscopic traffic simulation 
A microscopic traffic simulation is a form of agent-based simulation wherein “…traffic flow is 
based on the description of the motion of each individual vehicle composing the traffic 
stream” (Barceló, 2010).  

In such simulations, a section of (a possibly real) road network is first constructed, including 
infrastructural elements like lanes, roundabouts, lane marking, traffic lights and signals, etc. 
The network is then populated by individual traffic participants (motor vehicles, VRUs, etc.), 
whose behaviour is prescribed by models (e.g., car following (Alexiadis, et al., 2004)). The 
individual participant then traverses the network and interacts with each other following their 
own individual behaviours. The models are generally calibrated in such a way that metrics 
such as traffic flow and density reach measured levels in the real world. 

While traversing the network, different participants will interact with each other under 
different scenarios. A scenario describes the traffic, infrastructure and environment for the 
simulation and consists of a sequence of scenes. A scene describes a snapshot that 
encompasses the mobile and immobile elements of the traffic, infrastructure and 
environment, and the relations between these elements.   

The scenarios give rise to interactions among traffic participants. When one or more 
interactions are safety-critical (e.g., if an intervention is needed to avoid a collision) the 
scenario is considered to be a safety-critical scenario.  

An interaction is a driving situation where the behaviour of at least two traffic participants 
can be interpreted as being influenced by their intention of occupying the same region of 
space at the same time in the near future (Defining interactions: a conceptual framework for 
understanding interactive behaviour in human and automated road traffic, 2020). 
Interactions in which only the behaviour of one traffic participant is affected are called 
reactions. 
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2.1.2 Driving Interactions, Severity and Surrogate Metrics of 
Safety 

Although driving interactions are very frequent in traffic, collisions are very rare. Intuitively, 
one can think of interactions as possessing a level of criticality (i.e., severity): Those with 
low severity have a lower chance to lead to collisions, and those with a higher severity have 
a higher chance to lead to collisions. A useful way to visualize the relationship between 
driving interactions and severity is shown in Figure 1. This figure shows the frequency 
distribution of driving interactions according to their severity. 

 
Figure 1 Driving interaction frequency distribution as a function of their severity. Adapted from 

(Estimating the severity of safety related behaviour, 2006) 
 

Although the general trend shown in Figure 1 has been confirmed in practice, the literature 
still lacks a generalizable theory of the circumstances that turn particular driving interactions 
into collisions. A frequent hypothesis is that collisions result from a temporal sequence of 
events in which a conflict event occurs prior to a crash event (Laureshyn, et al., 2016). Since 
conflicts (i.e., high-severity interactions) and collisions are aligned on the same continuum 
of events, the frequency of the low-severity events can be used to predict (statistically) that 
of high-severity events (i.e., collisions) (Blumenthal, et al., 2020).  

Although Figure 1 does not specify what severity is, several methods have been proposed 
to assign severity to interactions (e.g., time to collision). As explained in detail in D2.5, these 
methods yield the so-called surrogate metrics of safety (SMoS). The most common SMoS 
used in this report are defined in Table 1. 

Table 1: Definitions of surrogate metrics of safety used in the report. See D2.5 for complete details. 
Metric Unit Definition 

DRAC: Deceleration 
Rate to Avoid 
Collision 

m/s2 Differential speed between a following/ response vehicle and its 
corresponding subject/ lead vehicle divided by their closing time. 

CPI: Crash Potential 
Index  

- Probability that a given vehicle DRAC exceeds its maximum 
available deceleration rate (MADR) during a given time interval. 
Driver reaction time can be incorporated in DRAC  modified CPI  

PET: Post Encroach-
ment Time  

s The time between the moment a road user leaves the area of a 
potential collision and another road user arrives at it. 
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PICUD: Pot. Index 
for Collision with 
Urgent Deceleration 

m Distance between the two vehicles considered when they 
completely stop. 

TTC: Time to 
Collison 

s The time until a collision between the vehicles would occur if they 
continued on their present course at their present speeds. 

 

These metrics have limitations (e.g., they are only “car” centric, they are not data driven, 
they cannot be used for path planning purposes, etc. See D2.5 for details).  The partners in 
T2.2 developed new metrics to alleviate some of these limitations.  Their work is positioned 
as shown in Figure 2. 

 
Figure 2 Overview of the positioning of the research work by T2.2 partners. 

 

The partner contributions are presented next. 

2.2 Metrics for Motor Vehicle Interactions (TNO) 

2.2.1 Motivation 
The participation of TNO in WP2 was motivated in part by the need of developing methods 
to assess the safety of automated vehicles. The higher the automation level, the greater 
autonomy a vehicle has and the more it resembles an “artificial driver”. Although the 
automotive industry has large experience (and a long history) testing and assessing the 
safety of vehicle technology, it has much less experience assessing how safely a vehicle 
drives in traffic.  

Driving is a form of social activity mediated by technology. For a human driver, proving that 
he/she drive safely requires more than performing correctly particular manoeuvres in 
specific scenarios. He/she must also show awareness of the driving situation and the impact 
of his/her actions on other drivers and road users.  

It is not clear yet how automated vehicles should prove that they are safe drivers. It has 
been hypothesized that they should show that they execute the correct manoeuvres for the 
right reasons (Koopman, et al., 2018). Alternatively, an automated vehicle could be said to 
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drive safely if its observable driving behaviour (after it joins traffic) cannot be distinguished 
from that of other drivers3. 

As shown in Figure 1, the vast majority of current driving interactions (i.e., the most typical 
interaction) carry low severity. Thus, our approach in this project was to develop techniques 
that allow one to identify whether a driver (human or automated) drives “typically”.  

“Typical” driving varies with the type of location, time of day, weather conditions, etc. Thus, 
we developed methods to characterize typical driving interactions based on recorded data 
from specific contexts based on machine learning and statistical profiling techniques trained 
on publicly-available naturalistic driving data, such as Next Generation Simulation (NGSIM) 
(USDOT, 2006) and pNEUMA (On the new era of urban traffic monitoring with massive 
drone data: The pNEUMA large-scale field experiment, 2020).  

The first method, presented in Section 2.2.2, is instantaneous and therefore comparable 
with existing surrogate measures of safety (SMoS). Our metric models whether longitudinal 
vehicle pairs show (a)typical behaviour by using unsupervised anomaly detection 
techniques. The second method clusters unique rides (a single trip of a specific driver) based 
on how they drive. This is often referred to as driver behaviour profiling. Clustering of a ride 
is done based on how they compare with the norm for each driven road segment. We 
describe this metric in Section 2.2.3. In Section 2.2.4 we reflect on both metrics and we 
present our plans for T2.5 in Section 2.2.5. 

2.2.2 Unsupervised Anomaly Detection 
Modelling what is typical or (a)typical driving behaviour is related to the machine learning 
field of anomaly detection. An anomaly is a "condition that deviates from expectations, 
based, for example, on requirements, specifications, design documents, user documents, 
standards, or on experience" (ISO 26262, 2018). We will use anomaly detection as a method 
to distinguish typical driving behaviour from unsafe interactions. This rests on the 
assumption that unsafe driving behaviour is a rare occurrence and therefore abnormal or 
anomalous.   

More specifically, we focus on unsupervised anomaly detection. This means: 

• Models are focused on modelling the normal, or typical, behaviour. Frequent 
occurring relationships between the input signals are learned, which are 
leveraged during testing to define whether something is anomalous or not. 

• There is not an explicit assumption about the data other than that it follows a 
natural distribution between normal and abnormal data. Labelled data is not 
required to train a model. In our case, a ground truth of atypical driving behaviour 

 

 

 
3 In the foreseeable future, the driving skills of automated vehicles should match those of competent 
and careful human drivers. 



 
 

SAFE-UP D2.14: Description Metrics for Traffic Interactions 

 

This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under Grant Agreement 861570. 

17 

would be unfeasible to make. However, the lack of labelled data makes model 
validation a difficult task. 

• On the one hand, unsupervised anomaly detection methods can detect anomalies 
not considered a priori. On the other hand, certain expected, infrequent, behaviour 
can be considered anomalous by the model. 

We will cover these three aspects and show our results in the rest of this section. First, we 
will introduce our naturalistic driving dataset, and how we limit the effects of classifying 
expected, but low frequent, behaviour as anomalous. Further, we introduce the 
unsupervised deep neural network model we are going to use for our experiments: the 
autoencoder. After introducing our validation approach, we end this section by presenting 
our results. 

Naturalistic Driving Data 

We will train our model on the US Highway 101 (US-101) and Interstate 80 Freeway (I-80) 
data from the Next Generation Simulation (NGSIM) dataset (USDOT, 2006) (NGSIM US 
highway 101 dataset, 2007) (NGSIM interstate 80 freeway dataset, 2006). NGSIM is 
recorded at 10Hz, using stationary digital video cameras on top of tall buildings. The distance 
between the camera and the highway, camera angle, and image quality results in the NGSIM 
dataset containing significant amounts of noise and other limitations (n the assessment of 
vehicle trajectory data accuracy and application to the Next Generation SIMulation, 2011) 
(stimating acceleration and lane-changing 42 dynamics based on ngsim trajectory data, 
2008). To minimize these effects, we use a Savitsky-Golay (Smoothing and differentiation 
of data by simplified least squares procedures., 1964) filter to smooth vehicle positions over 
time. Further, we follow the approach by Altché et al. (An LSTM network for highway 
trajectory prediction, 2017), and use a first-degree Savitsky-Golay filter with a window length 
of 11 (which corresponds to a 1 second time window). The smoothed longitudinal and lateral 
positions over time are used to recalculate the velocity and acceleration of each vehicle. 
This is similar to how NGSIM is constructed; positions over time are tracked and other 
signals are derived from these. 

Given the importance of natural data distribution for unsupervised anomaly detection, we do 
additional data filtering by removing unrealistic longitudinal driving behaviour. First, all same-
lane longitudinal vehicle pairs (a leader 𝑙 and a follower 𝑓) are extracted from the dataset. 
Then, every vehicle pair that violates one of these two rules at least once is removed from 
the dataset: 

1. 𝛥𝐷 < 0, where 𝛥𝐷 is the inter-vehicle-distance between both vehicles. A 
negative 𝛥𝐷 would indicate an accident has happened, but in NGSIM this 
occurs frequently as a result of data noise. 

2. |𝐴!| > 4 ∨ |𝐴"| > 4, where 𝐴! and 𝐴" are the leading and following vehicle 
accelerations. This filters out sudden changes in position measurements 
that lead to very high acceleration or deceleration. 

To prevent us from classifying normal, non-severe, but low-frequent behaviour as atypical, 
we limit ourselves to longitudinal driving behaviour. More specifically, every timestep from 
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the remaining longitudinal vehicle pairs is used as a sample if #$
%!
<= 4 , where #$

%!
 correspond 

to the Time Headway (THW) between both vehicles (Evans, 1991) for that timestep. This 
prevents samples with high inter-vehicle distances, which are rare in the rush hour traffic of 
NGSIM, to be considered anomalous by the model. Further, in our selection of input features 
for the autoencoder model, we do not include any lateral features such as position within the 
lane and lateral velocity/acceleration. This prevents lane change behaviour, which is 
infrequent in our remaining data, from becoming classified as anomalous.  

The data that is used as input for the anomaly detection model solely consists of longitudinal 
velocity, acceleration and distance features. For velocity 𝑉 and acceleration 𝐴 we use both 
the leading 𝑙 and following 𝑓 vehicle values as features, as well as their relative values (Δ𝑉 =
𝑉" − 𝑉!, and Δ𝐴 = 𝐴" − 𝐴!). Further, we include the inter-vehicle-distance Δ𝐷. Since we want 
to balance acceleration, velocity, and inter-vehicle-distance to be as important as the others 
for our model, we triple the importance of the	Δ𝐷 feature during modelling. In summarizing, 
the following seven features are used for our model: 

Velocity features: 

• 𝑉! 

• 𝑉" 

• 𝛥𝑉 

Acceleration features: 

• 𝐴! 

• 𝐴" 

• 𝛥𝐴 

Distance features: 

• 𝛥𝐷 

 

Autoencoder 
 

 

Figure 3. A typical encoding-decoding autoencoder architecture. 
 

Figure 3 shows a typical autoencoder structure: It is a deep neural network that uses an 
encoding-decoding architecture to learn a mapping from the input to itself (Nonlinear 
principal component analysis using autoassociative neural networks, 1991): 
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𝑋3 = 𝐷(𝐸(𝑋))  
where 𝑋 is the input data, 𝐸 is the encoder that encodes 𝑋 into a smaller latent space 
(bottleneck). 𝐷 is the decoder that decodes the latent representation back to a reconstruction 
of the input 𝑋3. 

The goal of an autoencoder is to train the encoder and decoder to minimize the difference 
between the actual input 𝑋 and reconstructed input 𝑋3 by using the l2-norm: 

min
&,$

||𝑋 − 𝐷(𝐸(𝑋))||(. 

During training, an autoencoder minimizes the loss over all its training samples. Since data 
outliers (i.e., anomalies and input noise) appear with low frequency in the training set, the 
autoencoder does not prioritize their reconstruction while training. After training, the 
autoencoder reconstructs with the highest precision the most common characteristics of the 
indicators applied to it. This allows one to readily identify anomalies by simply comparing 
the inputted and reconstructed indicators and determining when the reconstruction error 
exceeds acceptable levels. This makes autoencoders well suited for anomaly detection 
applications (Anomaly detection with robust deep autoencoders, 2017) (Variational 
autoencoder based anomaly detection using reconstruction probability, 2015) (Outlier 
detection with autoencoder ensembles, 2017) and an excellent choice to model driving 
behaviour, as severe traffic conflicts are rare compared to typical driving interactions. 

More specifically, our autoencoder encodes the 7 inputs features to 2 dimensions via three 
dense layers: 7 -> 128 -> 32 -> 2. The decoder reverses the encoder architecture to output 
7 dimensions: 2 -> 32 -> 128 -> 7. The autoencoder hyperparameters are optimized toward 
minimizing the l2-norm reconstruction error for this architecture. We use ReLU (Imagenet 
classification with deep convolutional neural networks, 2012) activations and batch 
normalization (Batch normalization: Accelerating deep network training by reducing internal 
covariate shift, 2015) on all hidden layers. The model is trained for 100 epochs with a batch 
size of 1024 and uses Adam (Adam: A method for stochastic optimization, 2014) with default 
parameters as an optimizer. 

Validation Approach 

Whilst the goal of our approach is to monitor safe driving behaviour, in all its meaning, we 
cannot validate our modelling approach with the undefined concept of safe driving  
behaviour. Instead, we validate our approach to objective risk based on four different risk 
metrics. For every metric, we test how good the autoencoder is at defining severe traffic 
situations based on their frequency of occurrence. We compare our autoencoder results 
with the following four risk metrics: 

• Time to collision (TTC) (Near miss determination through use of a scale of danger, 
1972) (Traffic conflicts technique: state-of-the-art, 1996) models the time in 
seconds left before two vehicles collide, assuming nobody takes evasive action 
and speed differences are maintained. 

• Time headway (THW) (Evans, 1991) defines the time between the two vehicles 
passing the same location. More specifically, we model the time headway as the 
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time it takes between the rear bumper of the leading vehicle and the front bumper 
of the following vehicle to pass the same point. 

• Deceleration rate to avoid collision (DRAC) (Use of speed limiters in cars for 
increased safety and a better environment, 1991) is defined as the minimal 
required deceleration rate the following vehicle has to apply to avoid a crash with 
the leading vehicle. 

• Potential index for collision with urgent deceleration (PICUD) (Traffic conflict 
analysis and modeling of lane-changing behavior at weaving section, 2001) is 
defined as the distance between two vehicles when they completely stop 
assuming that the leading vehicle applies its emergency brake. We follow Uno et 
al. (A microscopic analysis of traffic conflict caused by lane-changing vehicle at 
weaving section, 2002) in picking the PICUD parameters: a reaction time of 1.0𝑠 
and a deceleration rate of 3.3𝑚/𝑠(. 

Results 

Figure 4 below shows the results of our experiments, where we compare the percentile 
reconstruction errors (higher equals more anomalous) of our autoencoder with TTC, THW, 
DRAC, and PICUD. Percentile values of the reconstruction error are taken to better visualize 
how they compare to the SMoS. 

From Figure 4 we can observe an inverse relationship between SMoS frequency and 
autoencoder reconstruction error.  

On the one hand, this leads to the correct tendencies, where the most severe cases have 
the lowest frequency and highest reconstruction errors. And this shows for all of our varied 
selection of SMoS (TTC, THW, DRAC & PICUD). On the other hand, this also results in 
infrequent and non-severe behaviour leading to higher reconstruction errors when compared 
to the most behaviours. The plots for THW and PICUD show this well.  

When there is no ground truth on safe driving behaviour, the lack of interpretability of the 
autoencoder metric troubles validation efforts. There is no theoretical guarantee that higher 
reconstruction errors indicate more severe situations. Additionally, with this approach, one 
has to consider the many other dimensionalities of the data, especially those unrelated to 
severity, where you’d expect similar outcomes: a lower frequency leads to higher 
reconstruction errors. For the presented case, where we only focus on longitudinal vehicle 
pairs on highway driving taken from similar circumstances (i.e.: similar traffic flow & 
congestion), we can limit our data dimensionality, and therefore model, to be on a scale of 
severity. However, when applying this methodology to the much more multi-modal, vibrant, 
and varying context of urban driving, this became an infeasible task. 

Whilst unable to solve with this approach, the requirements of a more theoretically grounded 
approach and the ability to cope with the complexities of urban driving, led us to explore and 
develop a metric based on driver profiling as described in the next section. 
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Figure 4. Autoencoder percentile reconstruction errors distribution for TTC, THW, DRAC, and 

PICUD. We plot the median reconstruction error within the interquartile range bandwidth. On top of 
each graph the marginal distribution of the corresponding risk metric is visualized. 

 

2.2.3 Driver Profiling 
Driver Behaviour Profiling by Clustering 

Driver behaviour profiling is defined as “a normalized score of driver behaviour which serves 
as a proxy for assessing crash risk by combining a number of measures of risk on a common 
scale within and across drivers.” (Driver behaviour profiles for road safety analysis, 2015). 
We focus on behaviour as a collection of interactions. This is different from the previous 
metric which focuses on singular interactions between a leading and following vehicle. This 
has as advantage that this measure is aggregated over different driving modalities, which 
makes the influence of these modalities less severe on the outcome than in the previous 
metric.  

Behavior profiling relies on extracting features from data that are known to be proxies for 
critical scenarios. These features can then be used to create a driver profile per driver. Then 



 
 

SAFE-UP D2.14: Description Metrics for Traffic Interactions 

 

This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under Grant Agreement 861570. 

22 

we can cluster these driver profiles in different clusters to make sense of the different kinds 
of profiles that are found in the data.  

Our approach is based on the work of Warren et al. (Clusters of driving behavior from 
observational smartphone data, 2019) who cluster drivers based on how they compare to 
the norm across unique road segments. We believe selecting road segments is important to 
cope with the variety of urban road networks. In the rest of this section we describe our 
feature selection approach, naturalistic driving dataset, how we select road segments, 
calculate and cluster driver profiles. Finally,  our clustering results are presented and 
interpreted. 

Feature selection 

Selecting profiling features is an important first step. To be able to describe and analyse 
clustering results, we need an in-depth understanding of the chosen features and how they 
are related to crash risk. Also, each feature should correlate with the actual behaviour.  

For this metric, we pick velocity as our first feature. Higher velocities are associated with an 
increase in crash risk (Travelling speed and the risk of crash involvement volume 2-case 
and reconstruction details, 1997) (MoRT&H, 2018) (The Power Model of the relationship 
between speed and road safety: update and new analyses, 2009) (The effects of drivers' 
speed on the frequency of road accidents, 2000). Besides this, higher velocities are 
correlated with the impact velocity of a crash, leading to more severe crashes (Speed limits, 
enforcement, and health consequences, 2012) (Traffic safety dimensions and the power 
model to describe the effect of speed on safety, 2004). 

Further, we select acceleration as a feature. Aggressive acceleration and deceleration 
events, when a driver applies more force to the pedal than during normal driving, are 
associated with a larger risk of collision (Driver behaviour profiles for road safety analysis, 
2015) (Using naturalistic driving data to assess variations in fuel efficiency among individual 
drivers, 2010). 

Our driving profiling techniques are based on statistics of speed and acceleration over 
different road segments. These variables are leading measures of safety, as they correlated 
significantly (in the statistical sense) with hard braking and (in-turn with) rear-end collisions 
(see Figure 5) (Safe Enough: Approaches to Assessing Acceptable Safety for Automated 
Vehicles, 2020). 

 

Figure 5: Leading measures and safety 
 

Naturalistic Driving Data & Road Segmentation 

We use the pNEUMA dataset for developing this metric (On the new era of urban traffic 
monitoring with massive drone data: The pNEUMA large-scale field experiment, 2020). The 
pNEUMA dataset consist of half a million vehicles that have been collected from Athens 

Speed/Accel. 
Profiles 

Hard braking Rear-end 
collisions Proxy for Proxy for 
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during morning peak-hour by the usage of drones. The dataset is recorded at 25 frames per 
second. 

To prevent our model from finding disturbances within the data (either resulting from data 
quality or physical impossibilities), we use a Savitsky-Golay (Smoothing and differentiation 
of data by simplified least squares procedures., 1964)  filter to smooth vehicle velocities over 
time. We use a first-degree Savitsky-Golay filter with a window length of two seconds (51 
samples). The smoothed velocity is also used to calculate the acceleration of each vehicle. 

Besides this, we filter out all the non-car-like vehicles from the dataset. This means that we 
only consider the vehicles with the ‘car’ or ‘taxi’ class.  

We only use data from the main one-way roads in the dataset, because they are similar to 
the roads that will be analyzed in the simulations of the Task 2.5 .  

The selected roads are divided up into segments. The aim for this is, just as in Warren et al. 
(Clusters of driving behavior from observational smartphone data, 2019), to compare the 
behaviour of the drivers per road segment. This is done to cope with the different kind of 
behaviours that span the different kind of road segments in the urban environment. This 
means that we cut up a road in different segments, dividing them based on where traffic 
lights, pedestrian crossings and intersections are on the roads.  

 
Figure 6: Part of the routes selected from the pNEUMA dataset. The black squares show how the 

segments are defined. They are defined based on the road structure. 
 

Driver Profiles and Clustering 

The driver profiles are constructed for each driver. As we are unable to connect multiple trips 
of one driver, we consider each trip as a separate driver. We define a trip 𝑡 ∈ 𝑇 as a 
sequence of segments 𝑡 = (𝑠), 𝑠(, … , 𝑠* , … , 𝑠+), where each segment 𝑠* ∈ 𝑆 the set of defined 
segments. 

 

For every segment 𝑠 ∈ 𝑡	and every trip 𝑡 ∈ 𝑇, we calculate the following features: 

- The mean of the trip’s velocity within that segment 𝑣,
-,. 

- The standard deviation of the trip’s velocity within that segment 𝑣/
-,. 

- The mean of the trip’s acceleration within that segment 𝑎,
-,. 
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- The standard deviation of the trip’s acceleration within that segment 𝑎/
-,. 

By using for both the speed and acceleration not only the mean but also the standard 
deviation as features, we also include the variety of the speed and acceleration values in 
the segment.  

When calculating these features we remove all measurements of the vehicles when the 
speed at that timepoint is lower than 0.1 m/s. The time a drive stands still in certain segments 
can vary greatly in a segment based on whether, for example, a traffic light is red or green. 
If we, for example, have the speed profiles of two different trips in the same segments as in 
Figure 7, the behaviour when driving is the same, only the time the driver stood still is 
different. To make sure these two similar profiles also have similar features, we remove the 
measurement in a segment when the car is standing still. 

 

 

 

 

 

Figure 7: Two hypothetical speed measurements in a segments where the only difference is the 
time the cars stood still in front of a traffic light. 

 

Each calculated feature 𝑥 ∈ 	 {𝑣, , 𝑣/ , 𝑎, , 𝑎/} is then normalised per segment according to 

𝑥!"#$%&
',) =

𝑥',) − 𝑥'

𝜎*'
 

Where: 

𝑥- is the mean of feature 𝑥 of all trips in segment 𝑠. 

𝜎0- is the standard deviation of feature 𝑥 of all trips in segment 𝑠. 

This is done to compare the behaviour of a driver in that segment to the other drivers within 
that segment. As shown in Figure 8, this makes these segment-based features relative to 
the population of trips that drove through that segment. For example, the red car in Figure 
8 has a relatively low mean velocity, but a high acceleration.  
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Figure 8: Visualization of comparison of ego vehicle (red) average feature values versus the norm 
for its current segment (green). Blue and yellow indicate different road segments. Image partially 

created with icograms.com. 
 

Then, for each trip 𝑡 and each feature 𝑥 ∈ 	 {𝑣, , 𝑣/ , 𝑎, , 𝑎/} all normalised values per 
segment are aggregated to the whole trip as follows: 

𝑥) =
1
𝑁
'𝑥!"#$%&

',)
'∈)

'

 

Such that for every trip, we have the feature vector (𝑣,. , 𝑣/. , 𝑎,. , 𝑎/. ) as a representation of that 
trip driver profile. Using the driver profiles for each trip we use unsupervised clustering to 
discover different types of driver profiles. We use the K-means (Least squares quantization 
in PCM, 1982) algorithm for clustering. The elbow method is used to determine the number 
of clusters.  

Results 

Figure 9 shows the four different features of the diver profiles plotted together. Each dot is 
a different trip. In Table 2 we can see the correlation between the different features of the 
diver profiles. We see that there is a strong positive correlation between the acceleration 
standard deviation and velocity standard deviation. Besides that, there is a negative 
correlation between the mean velocity and both the standard deviation of the velocity and 
the standard deviation of the acceleration.  
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Table 2: Correlation between the features of the diver profiles 
 Mean velocity Standard deviation 

velocity 
Mean 
acceleration 

Standard deviation 
acceleration 

Mean velocity 1 -0.34 0.09 -0.23 

Standard deviation 
velocity 

-0.34 1 0.06 0.84 

Mean acceleration 0.09 0.06 1 0.01 

Standard deviation 
acceleration 

-.023 0.84 0.01 1 

 

 
Figure 9: Plot of all driver profiles based on their four features and the combinations. Each dot is 

one trip. 
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Using the elbow method, four clusters were found in the data. Figure 10 shows these 
clusters for the four features. The purple cluster consists of 1210 trips, the red cluster 
includes 1216 trips, the blue cluster 998 trips, and the green cluster 521 trips. Table 3 shows 
the mean for each feature in each cluster.  

Table 3: Mean of each driver profile feature for each cluster. 
Cluster Mean velocity Standard 

deviation 
velocity 

Mean 
acceleration 

Standard 
deviation 
acceleration 

Purple -0.67 0.03 -0.64 -0.01 

Red 0.69 -0.93 -0.10 -0.87 

Blue 0.29 0.29 0.89 0.27 

Green -0.77 1.69 -0.10 1.66 

 

For the four clusters, we can make the following observations: 

• The purple cluster consists of profiles with an average standard deviation 
of the velocity and acceleration per segment, but it has a low average speed 
and acceleration.  

• The red cluster is characterised by a below-average standard deviation of 
velocity and acceleration, but has a high average velocity. We see in Figure 
11 that most of these trips happen earlier in the morning with the peak of 
the distribution at a starting time between 8:00 and 8:30.  

• The blue cluster has all features at above-average values.  

• The green cluster is mainly characterised by an above-average velocity 
standard deviation and above-average acceleration standard deviation. But 
with that, it also has a low mean velocity. This could include trips in which 
the driver has to start and stop a lot. What is also very noticeable is that in 
Figure 11 this cluster is skewed to later starting times. With the peak of the 
distribution around 9:30 to 10:00.  
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Figure 10: Plot of all driver profiles clustered in four clusters. Each dot is one trip. 

 
 

 
Figure 11: starting time of different trips per cluster. 

Discussion and conclusion 

Based on these made observations we could interpret the clusters in the following way: 

The purple cluster has trips in it with driver profiles with average or lower than average 
features. Because high values for these features are proxies for unsafe driving, it is possible 
to interpret this cluster as a cluster that consists of divers with a typical or safe driving style. 

In contrast to that, the blue cluster consists of profiles which on average score higher on the 
different features. As a high score on these features is a proxy for safety-critical driving, we 
could say that this cluster consists of the more unsafe trips that are recorded in the dataset. 
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However, as we only look at the relative measurement of these features it is not possible to 
say anything about the absolute difference between the safety of driver profiles. It only 
shows behavioural tendencies.  

For the red and green clusters, we see something else happening. Both clusters are 
correlated with the time of driving. Drivers in the red clusters seem to have made their trip 
between 8:00 and 9:30, while the green cluster has the majority of the drives later in the 
morning, between 9:00 and 10:30. This shows that these profiles are dependent on a 
variable that is also dependent on the time of the trip. This can be something like the 
heaviness of the traffic, or the number of other kinds of road users like scooters.  

This means that these clusters should not be interpreted as reflecting only the drivers' 
behaviour, as it also reflects a road modality (e.g. amount of traffic). This problem could be 
alleviated if we have more data than only one trip per driver. If we have more trips per driver, 
a driver will encounter also a lot of different traffic amounts and thus this variable will be not 
as present in the driver profiles. Another way to remove this variable from influencing the 
driver profile is to only consider trips in a specific traffic amount. This is an important lesson 
to keep in mind when using the driver profiling in the simulations in Task 2.5. 

We can conclude that using driver profiling to validate the driving behaviour of drivers can 
be useful. We were able to find two clusters which could be interpreted as containing safe 
driving behaviour and unsafe driving behaviour. But we also see that there is ample 
opportunity to further develop the method, as it can still be challenging to capture the drivers' 
behaviour independent of the driving modalities like the kind of road or the traffic situation. 

2.2.4 Reflection 
Automated vehicles with increasingly higher levels of automation will need to prove in the 
future that they follow safe driving behaviour principles. However, it is yet undefined what 
safe driving means. We reason that when an automated vehicle drives like a typical human 
being, it has the correct driving behaviour and its majority of driving will be safe (Figure 1). 

Two methods were introduced to model the typicality of human driving. Our first method, as 
described in Section 2.2.2, is based on unsupervised anomaly detection. By detecting the 
abnormal situations in longitudinal vehicle following, atypical and potentially dangerous 
situations can be detected. Whilst this works well in a controlled environment such as rush-
hour highway driving, handling the multimodality of urban driving and the lack of a 
theoretically justified model interpretation are the largest drawbacks of this method.  

Our second method, as presented in Section 2.2.3, tries to overcome these drawbacks by 
using driver profiling. This method looks for differences in the behaviour of drivers during 
their entire trip by constructing driver profiles. Subsequently, we cluster all profiles and find 
common driver profiles. Due to our selection of features being aligned with the safety of 
driving, we can indicate which driver profiles are considered safe or unsafe. Our study shows 
that our approach managed to find driver profiles indicating certain driving behaviour. 
However, the multimodality of driving, especially related to traffic congestion, lead to time-
specific driving profiles. We believe more data (i.e.: multiple trips per driver) could limit these 
effects. Due to being better interpretable, promising initial results, and the option to simulate 
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sufficient data per driver, we picked this metric for our work in T2.5 as described below 
(Section 2.2.5). 

2.2.5 Preliminary plans for T2.5 
This method for driver behaviour profiling described in Section 2.2.3 will be used on the 
simulations to describe and cluster the behaviour of the agents within the simulation. For 
each variation of the simulation, with and without AVs, we will cluster the agents based on 
the previously described features that are correlated with unsafe driving behaviour. With 
these profiles two separate analyses will be done.  

Firstly, we will look at profile clusters within one simulation. Here the main objective is to 
validate if there is a correlation between parameters of initialized agents which influence the 
safety of the agents' behaviour and the found driver clusters.  

Secondly, the profiles from clusters of different variations of simulations will be compared. 
The aim is to see if replacing part of the agents for AVs will change the driving behaviour 
of both the AVs as well as the other agents in the simulation. In the driving profiling 
method, this will be indicated by a change of clustering.  
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2.3 Metrics for Motor Vehicle Interactions (TUD) 

2.3.1 Motivation 
Traditionally, traffic safety studies for interactions between motor vehicles (car-to-car 
interactions in short) relied on the records of reported vehicle crashes, field operational test 
data and naturalistic driving data, etc (Dingus, et al., 2016; Mullakkal-Babu, Wang, He, 
Arem, & Happee, 2020). Meanwhile, based on the simulated vehicle trajectories, the car-to-
car interactions can be quantified by various metrics regarding different aspects, e.g., 
potential time to collision, collision probability and crash severity. Such measures are known 
as SMoS (Gettman & Head, 2003; Laureshyn, et al., 2016), and a prominent example is 
TTC. These metrics indicate a potential conflict between two road users.  

However, during on-road driving, the neighbouring traffic environment, especially for the 
neighbouring vehicles, can vary dynamically. The SMoSs for motor vehicle interactions, 
which are defined based on the predicted motions of interacting vehicles, are suitable for 
this purpose, i.e., they can be calculated at each moment during an encounter. The subject 
vehicle, whose safety is to be assessed, is not certain about the future motion of its 
neighbouring vehicles and consequent crash outcome. Uncertainty, therefore, is an inherent 
component of the driving risk estimate. Most SMoS do not typically account for this 
uncertainty.  

We propose an approach named Probabilistic Driving Risk Field (PDRF) to assess the 
driving risk for car-to-car interactions. The approach uses vehicle states (including vehicle 
position, velocity and mass) as input and takes into account the probability of motion 
predictions of neighbouring vehicles.  

2.3.2 Technical Description 
Using the paradigm of Artificial Field Theory (Dunias, 1996), we propose an approach 
named PDRF to assess the driving risk for car-to-car interactions. The proposed SMoS 
PDRF takes into account the probability of motion predictions of neighbouring vehicles, and 
consists of a crash severity term and a collision probability term (ISO 26262, 2018). The 
subject and neighbouring vehicle’s possible positions and associated probabilities at 
discrete future time steps are predicted. The collision probability is modelled as the likelihood 
of overlap in the predicted spatial configurations of the subject and neighbour vehicle, under 
the motion prediction results. The risk can be estimated for a single time step or over multiple 
future time steps, depending on the required temporal resolution.  

To calculate the collision probability in PDRF, the motions of the subject and neighbouring 
vehicles are predicted separately. For the subject vehicle, if a motion planner is equipped 
and  provides a planned trajectory, its future motion of the subject can be known accordingly; 
otherwise, we propagate its future motion based on its current vehicle state. 

The dynamic state of a neighbouring vehicle is denoted by the position (𝑥, 𝑦) of its center of 
mass and the velocity I𝑣0 , 𝑣1J	along the longitudinal and lateral directions, resulting in  
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where 𝑎0 and 𝑎1 are the accelerations along with the longitudinal and lateral directions 
respectively. The dynamic state is to be propagated from the current time instant 𝑡 to a future 
time 𝑡 + 𝑡". 

The neighbouring vehicle motion is also subject to several physical constraints, including 
non-holonomic behaviour, backward motion prohibition, and acceleration range limitation. 

- −0.17𝑣0 ≤ 𝑣1 ≤ 0.17𝑣0 representing the non-holonomic behaviour of the 
vehicle. This condition assumes that the vehicle heading angle is 
approximately represented as 𝛽 = arctan 3"

3#
 and is bounded as |𝛽| ≤ 10○, 

during motorway driving. 

- 𝑣0 ≥ 0	representing the strictly forward movement. 

- 𝑎05*+ ≤ 𝑎0 ≤ 𝑎0560	representing the feasible acceleration range that is 
restricted by the engine power and brake torque limitations. 

The probability functions of acceleration per vehicle can be estimated by treating 
acceleration signals as a random variable (Analyzing human driving data an approach 
motivated by data science methods, 2016). Given the predicted future motions of the 
neighbouring vehicles, PDRF further assumes their accelerations have a normal distribution 
under a specific mean (typically set as 0 since we do not have trajectory planning information 
of the neighbouring vehicle) and standard deviation (Analysis of effects of driver/vehicle 
characteristics on acceleration noise using GPS-equipped vehicles, 2010). For a single 
future time instant, the collision probability can now be calculated as the double integral of 
the probability density functions (PDF) of the neighbouring vehicle within the intersection 
area.  

Here, the value of the acceleration variability distribution for a particular value of acceleration 
is interpreted as the relative likelihood of occurrence. We consider “collision likelihood” 
defined as the relative likelihood of a neighbouring vehicle 𝑛 applying acceleration:  

𝑎0,+ =
70873".!89.;6",%.!

&

9.;.!
&  , 

𝑎1,+ =
<18<3#.!89.;6#,%.!

&

9.;.!
& , 

where 𝑎0,+/𝑎0,- and 𝑎1,+/𝑎1,- denote the accelerations of the neighbouring vehicle 𝑛	/ subject 
vehicle 𝑠 in longitudinal and lateral directions, 𝛿𝑥 and 𝛿𝑦 the relative spacing, 𝛿𝑣0	and 𝛿𝑣1	the 
relative velocity in longitudinal and lateral directions, and 𝑡" the future prediction horizon. 
Considering 𝑎0,+	and 𝑎1,+ as random variables, the collision likelihood 𝑐 can be defined as 
follows: 

𝑐 = 	𝒩 ^
<08<3".!89.;6",%.!

&

9.;.!
& |µ0 , σ0a ⋅ 𝒩 ^

<18<3#.!89.;6#,%.!
&

9.;.!
& |𝜇1 , 𝜎1a , 
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where 𝒩 is the PDF of normal distributions, and its parameters 𝜇 denotes the mean and 𝜎 
denotes the standard deviation. Note these parameters can either be pre-defined through a 
calibration process, or dynamically updated using advanced deep neural networks for 
probabilistic motion predictions (Probabilistic Risk Metric for Highway Driving Leveraging 
Multi-Modal Trajectory Predictions, 2022). 

 
Figure 12. Geometric representation of the polygons Q, Z and their overlap O (area shaded in pink). 
 

However, the vehicle possesses a geometry and a crash is the overlap in geometric 
boundaries of vehicles. Further considering the collision probability of the vehicle model and 
imposing the motion constraints, the boundary of the reachable state of 𝑛 at time 𝑡 + 𝑡" can 
thus be represented as a quadrilateral polygon Q (see Figure 12). Using the predicted 
position of 𝑠 at 𝑡 + 𝑡" along with the geometry of the two vehicles, we define the potential 
collision zone: Z. Thereby, the collision probability is non zero if there exists an overlap in Q 
and Z. The overlapping region is another polygon denoted by O defined in the spatial 
domain. The overlap O in the spatial domain has to be converted to acceleration domain 
denoted 𝑎= for collision probability estimation by using the following relation. 

𝑎0> =
𝑥> − 𝑥+ − 𝑣0,+𝑡"

0.5𝑡"(
, 𝑎1> =

𝑦> − 𝑦+ − 𝑣1,+𝑡"
0.5𝑡"(

	 

(1) 
where 𝑥> and 𝑦> denote the corner positions of O, 𝑎0> 	and 𝑎1>  denote the corresponding 
corners of 𝑎=. Eq. (1) specifies a linear relationship between acceleration coordinates and 
the spatial coordinates, and therefore 𝑎= is also a quadrilateral polygon. Then the collision 
probability 𝑐 can be obtained by integrating the joint acceleration variability distribution over 
𝑎= as follows: 

𝑐 = 𝒩I𝑑𝑎0 , 𝑑𝑎1J	.		
 

More details of the collision probability calculation can be found in (Probabilistic field 
approach for motorway driving risk assessment, 2020). 

 

The expected crash severity 𝑠 considering the vehicle mass and velocity is constructed as 

𝑠 = 0.5𝑀𝛽((Δ𝑉)( 
(2) 
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where 𝑀 is the mass of subject vehicle, β = ?'
?'@?

 the mass ratio with 𝑀+ denoting the mass 

of neighbouring vehicle, and Δ𝑉 the relative velocity between subject and neighbouring 
vehicles. In practice, the information of neighbouring vehicles can be obtained by various 
sensors and corresponding processing algorithms in the subject vehicle, or via 
communications between vehicles. The establishment of crash severity in Eq. (2) is under 
an assumption that the collision is inelastic without secondary crashes due to bounce back, 
indicating both the vehicles would move together after the crash. Besides, the relative 
velocity between the vehicles is calculated using the current velocities at time instant 𝑡. 

The PDRF metric is finally calculated as the product of the collision probability and the 
expected crash severity, 

PDRF = 𝑐 ⋅ 𝑠, 

where 𝑐 is the predicted collision probability at time 𝑡 + 𝑡" . 

Calibration and validation 

To calibrate and validate the proposed car-to-car interaction SMoS PDRF, we consider near-
crash scenarios from both simulations and naturalistic driving data.  

A set of safety-critical hard braking events were simulated. The subject vehicle travels on a 
lane, and a leading vehicle travels in the front on the same lane both starting with a constant 
longitudinal velocity. Each simulated event lasts for 15 seconds. At 𝑡 = 6 s, the lead vehicle 
abruptly applies a constant deceleration of 5 m/s2 to stop. The subject vehicle maintains 
constant velocity at the beginning, since we aim to evaluate the driving risk when the subject 
does not take any actions. At the final stage of the event, the ego brakes with 5 m/s2 to stop 
just at the end of the event. In practice, the subject vehicle could react earlier in line with the 
obtained driving risk, as we discuss later. We vary 3 parameters of this scenario. The initial 
spacing between the two vehicles is set as 20, 40, 60 and 80 meters. The initial velocity of 
the preceding vehicle is varied between 5–30 m/s with an interval of 1 m/s, and the maximum 
velocity of the two vehicles corresponding to each of the initial spacing is 10 m/s, 16 m/s, 23 
m/s and 30 m/s respectively. This results in 1217 simulations (36, 144, 361 and 676 
simulations for different initial spacing respectively). To avoid crashes before hard braking, 
the minimum initial time headway between the two vehicles is set to 3 s. Therefore, the initial 
velocity of the subject is varied from a minimum of 5 m/s to a maximum of 30 m/s. The 
simulated scenarios thus include both crash and non-crash events. To set a ground truth, 
the crash events are labelled as Positive risk, and the non-crash events are Negative risk. 
In line with preliminary experiments and to achieve a higher crash prediction accuracy, TTC 
< 3 s and PDRF > 100 Joules are then selected as the threshold to identify risk events. We 
quantify the accuracy of risk estimates in terms of the True Positive, True Negative, False 
Positive and False Negative risk description. 
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(a) 

 
           (b)                                                                           (c) 

Figure 13. Overview of risk description by PDRF and TTC in hard braking scenario simulations. (a) 
Simulations in which preceding vehicle (80 m ahead) brakes hard. As a ground truth, crashes are in 
red (Positive risk) and no crashes are in green (Negative risk). (b) Risk description with PDRF. (c) 

Risk description with TTC. 
As seen in Figure 13, both PDRF and TTC result in few false-positive cases, particularly in 
those scenarios in which the relative velocity between the subject and preceding vehicle is 
relatively small. These false positives represent high risk interactions leading to near-miss 
events. The acceleration distribution of the preceding vehicle is calibrated as 𝒩(𝑎0|0, 2) and 
𝒩I𝑎1|0, 0.2J. 

We further validate PDRF using real-world hard braking event during trip number 8427 in 
the 100 vehicles naturalistic study (Neale, Dingus, Klauer, Sudweeks, & Goodman, 2005). 
The subject vehicle is following the lead vehicle fairly closely on a two-lane road when the 
preceding vehicle slows down to stop. The subject vehicle brakes to avoid hitting the 
preceding vehicle in the rear. Both TTC and PDRF risk estimates qualitatively reflect the 
event narration.  

During the initial phase (0 to 4 s), the subject was closely following the preceding vehicle 
indicating an unsafe interaction. During this phase, both PDRF risk with different prediction 
time step 𝑡"(see Figure 14(d)) and TTC (see Figure 14(e)) indicate the existence of risk. 
Thereafter the preceding vehicle slows down to stop; this unsafe development is described 
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as a gradual descent in TTC (time 4–6 s) and as a temporally adjacent rise in the severity 
(Figure 14(b)) and the PDRF risk descriptions (𝑡"=4, 3 and 2 s). Evaluating the multiple 
descriptions of risk (see Figure 14(d)) and crash probability (see Figure 14(c)) reveals how 
this situation evolves in terms of driving risk. The low peak in crash probability with 𝑡"=2 s 
indicates marginal chances of an imminent crash (i.e. at the next 2 s). Moreover, a high-risk 
peak with 𝑡"=3 s around 5.6 s and a subsequent lower risk peak with 𝑡"=2 s suggests that 
the hard braking, which started around 5 s, is sufficient to evade the danger. In combination, 
these observations indicate that the braking was effective to avoid the danger. The absence 
of risk with 𝑡"=1 s indicates the collision was successfully avoided at least until the end of 
the observation. PDRF risk with 𝑡"=3 s attained the highest estimate and its moment of 
maximum risk (see Figure 14(c)) is closer to the moment when the subject begins the 
braking around 5 s (see Figure 14(f)). It can be seen that the PDRF risk model could 
qualitatively reflect the event narration via modelling both the crash possibility and the crash 
severity, and its risk description was consistent with that by TTC. 

 
Figure 14. Risk estimates of an encounter in which the subject vehicle avoids a rear-end crash by 

braking. 
 

The prediction time horizon 𝑡"	influenced the PDRF risk descriptions. Notably, the PDRF risk 
estimate with 𝑡"=3 s yielded a single peak, attained the maximum value, and was temporally 
closest to the moment when the driver initiated the evasive manoeuvre. The proposed PDRF 
will be further validated with safety-critical events created in the simulation platform in T2.5. 
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2.3.3 Preliminary plans for T2.5 
The identification and/or development of criticality metrics for driving interactions is one of 
main goals of T2.2. In T2.5, such metrics can be used to identify safety critical interactions 
through simulations. Specifically, for the developed SMoS PDRF for car-to-car interactions, 
the general procedure to employ PDRF is as follows. 

• Generate benchmark simulation scenarios for calibrations. The safety-
critical car-to-car interactions have been identified in advance by manual 
labelling or other classic SMoSs, e.g., Surrogate Safety Assessment Model 
(SSAM) module.  

• Pre-process trajectory files from simulation platform Aimsun. To enable 
offline simulation analysis, the generated trajectory output with labels 
should be further processed before using as input for PDRF.  

• Calibrate parameters of the PDRF, including prediction time horizon, normal 
distribution parameters, and the threshold for safety-critical event 
identifications. Check whether the calibrated PDRF has a 
comparable/advanced performance compared to metrics in SSAM.  

• Employ PDRF in line with the overall simulation analysis procedure 
designed in T2.5. Ideally, PDRF will be employed to identify car-to-car 
interactions for a set of scenarios, where initial traffic settings, especially 
the penetration rate of AVs, vary. Distributions of the PDRF corresponding 
to different trajectory settings are to be obtained, and their corrections are 
to be analysed. In doing so, certain particular properties in future traffic 
scenarios involving AVs are expected to be revealed.  
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2.4 Metrics for VRU Interactions (IKA) 

2.4.1 Motivation 
Unlike in the area of car-to-car interactions, the literature available showed a low level of 
maturity looking at VRU-to-traffic interactions. Nevertheless, research into high-risk 
situations for pedestrians and cyclists is of particular relevance, as they are especially 
vulnerable in potential collisions (Cyclists’ anger experiences in traffic: the cycling anger 
scale. Transportation research part F: traffic psychology and behaviour, 62, 564-574, 2019). 
Collisions with motorized traffic pose the greatest risk, which is why the IKA focuses on 
VRU-to-car interactions. For this reason, in T2.2 several measures based on the car-to-car 
interaction literature that are capable of describing the risk of VRU-to-car interactions were 
selected. These will be described in detail in the following section. The goal is to apply 
already known measures in the field of VRUs and thus to develop them further within the 
scope of T2.5. 

2.4.2 Technical Description 
In the SAFE-UP project, the IKA did not want to focus just on the observable behaviour but 
also wanted to consider the emergence of VRU’s behaviour. For this reason, an extensive 
literature review was conducted at the beginning of T2.2. As described in deliverable D2.5, 
the literature shows different aspects of human behaviour than can have an impact on the 
emergence of safety critical traffic situations. First of all, the VRU’s subjective evaluation of 
the situation (e.g. the perceived risk/ perceived criticality) is relevant if you look at Car-VRU 
interactions (Kovácsová, et al., 2019; Oron-Gilad, et al., 2020). Furthermore, the individual 
emotional state can influence human behaviour and their decisions in traffic situations 
(Dittrich, 2020). Regarding the observable measures, one can consider physiological values 
(e.g. heart rate; (Doorley, et al., 2015)) or objectivley measured VRU behaviour like 
trajectories (Abadi, et al., 2019) reaction times (Oron-Gilad, et al., 2020), speed (Abadi, et 
al., 2019) and aggressive behaviour (Dittrich, 2020) as indicators for upcoming potential 
critical traffic situations.  

Since these factors are primarily indicators of the occurrence of a critical situation due to 
VRU behaviour, this approach was combined with objective-based measures. For this 
reason, the participant study in T2.3 was not only used to collect data for the calibration of 
the predefined pedestrian and bicyclist model but to investigate the influence of the 
emotional state frustration on the actual human’s behaviour as well. Furthermore, one can 
find the mentioned human factors in the chosen simulation model behaviour. For example, 
recent research showed that the evaluation of the situation is crucial for the crossing decision 
of pedestrians (Zhuang, et al., 2020) and therefore determines the criticality of crossing 
situations as measured using the deceleration to safety time (DST), which is used for our 
simulation model. Even if the deeper investigation of these correlations between human 
factors and the resulting traffic behaviour were not in the focus of this project, this example 
shows the importance of considering this approach for further research projects. 

The chosen measures to assess the criticality of the resulting traffic interactions between 
VRUs and cars are described in detail in the following. 
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To evaluate the critical interactions between vehicles and VRU's, the known metrics from a 
car-to-car interaction are picked up and adapted to the use case based on the specific 
situations of the simulation (Lu, et al., 2021). For an unambiguous and direction independent 
determination of the individual metrics, a moving coordinate system is chosen. This 
coordinate system corresponds to the reference line coordinate system defined in 
OpenDRIVE, which follows the course of the road (ASAM, 2021). The "s coordinate" 
corresponds to the longitudinal coordinate and the "t coordinate" to the lateral. The velocities 
𝑣-		and 𝑣.	 are understood similarly. For a better understanding, the individual parameters 
are shown in Figure 15Figure 17. 

For the pedestrian, the metrics from Table 4 have been selected to identify and analyse 
potential critical interaction with a vehicle. The focus is only on scenarios in which the 
pedestrian crosses the road. Displayed are the metrics with their units and the mathematical 
relationship. Below is the description of the metrics and the corresponding modifications: 

• Deceleration to Safety Time (DST):  
The DST describes how much an object has to decelerate/accelerate in 
order to reach the conflict point just after the other object has left it (Hupfer, 
1997; Kotte, et al., 2018). This evaluation metric is suitable for scenarios in 
which the trajectories of the two objects cross and can thus be directly 
transferred to a situation in which a pedestrian crosses the road. 

• Post Encroachment Time (PET):  
PET describes the time difference between a pedestrian (𝑡𝑖𝑚𝑒BC2) leaving 
the crossing zone and a vehicle (𝑡𝑖𝑚𝑒%CD) entering it. In this case, the 
trajectories of the pedestrian and the vehicle cross. 

• Time Head Way (THW):  
THW describes the time gap to a preceding object. In our application, the 
interpretation of THW is modified so that the pedestrian is a standing object 
on the road. Thus, the THW between the approaching vehicle and the 
standing pedestrian is evaluated. The calculation of the metric is valid as 
long as the pedestrian is walking on the road. The modified THW is here 
theoretically equivalent to the Time to Collision where the pedestrian has 
no speed.  
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Figure 15: Schematic illustration of the used parameters and variables for a vehicle to pedestrian 

interaction 
 

Table 4: Evaluation metrics for the potential collision with a pedestrian 
Metrics Unit Equation 

Deceleration to Safety Time 
(DST) 

𝑚
𝑠(

 𝐷𝑆𝑇 = 𝑎 =
2 ∗ (𝑠%CD − 𝑣%CD ∗ 𝑡𝑖𝑚𝑒BC2)

𝑡𝑖𝑚𝑒BC2(
 

Post Encroachment Time (PET) s 𝑃𝐸𝑇 = 𝑡𝑖𝑚𝑒BC2 − 𝑡𝑖𝑚𝑒%CD 

Time Head Way (THW) s 𝑇𝐻𝑊 = 𝑡𝑖𝑚𝑒%CD =
𝑠%CD
𝑣%CD

 

 

For the bicyclist, the metrics from Table 5 were selected to evaluate the simulation. Just as 
for the pedestrian, the units and corresponding mathematical formulas for calculation are 
shown in this figure. The gray rows include potential longitudinal collisions and the green 
lateral collisions. Below is the explanation and interpretation of the individual metrics: 

• Time to Collison (TTC): 
The remaining time to an imminent collision between a vehicle and a cyclist, 
if the current driving condition (with respect to velocity, direction etc.) does 
not change. 

• Time Head Way (THW): 
Description of time gap from a vehicle to the preceding cyclist. 

• Post Encroachment Time (PET): 
The difference between the time a cyclist leaves a conflict point (timeEFGH) until the 
time a vehicle arrives to this point (timeIHJ). 

• Deceleration rate to avoid collision (DRAC): 
The rate at which a vehicle must decelerate to avoid a probable collision with a 
cyclist. Equation applies to vehicles traveling on the same path. 
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• Proportion of stopping distance (PSD): 
The ratio of distance available between two objects and the distance that is required 
to avoid a collision with the maximum available deceleration rate (MADR). MADR 
depends on vehicle type and environmental conditions such as pavement skid 
resistance.  

• Lateral Time to Collison (LTTC): 
Same as TTC only adapted to a potential lateral collision. Accordingly, not 
longitudinal distances and velocities are considered here, but the respective lateral 
components. 

• Lateral Time Head Way (LTHW): 
Same as THW only adapted to a potential lateral collision. 

• Lateral Distance (LD): 
Absolute lateral distance between cyclist and vehicle that becomes relevant 
during overtaking manoeuvers. 

 

 
Figure 16: Schematic illustration of the used parameters and variables for a vehicle to cyclist 

interaction (longitudinal) 
 

 
Figure 17: Schematic illustration of the used parameters and variables for a vehicle to cyclist 

interaction (lateral) 
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Table 5: Evaluation metrics a the potential collision with a cyclist 
Metrics Unit Equation 

Time to Collison (TTC) s 
𝑇𝑇𝐶 =

𝑑𝑠
𝑑𝑣

= 	
𝑠%CD	.K	L*MC
𝑣%CD − 𝑣L*MC

 
Time Head Way (THW) s 𝑇𝐻𝑊 =

𝑠%CD	.K	L*MC
𝑣%CD

 
Post Encroachment Time (PET) s 𝑃𝐸𝑇 = 𝑡𝑖𝑚𝑒%CD − 𝑡𝑖𝑚𝑒L*MC 

Deceleration rate to avoid collision (DRAC) 𝑚
𝑠(

 𝐷𝑅𝐴𝐶 =
(𝑣%CD − 𝑣L*MC)(

2 ∗ 𝑠%CD	.K	L*MC
 

Proportion of stopping distance (PSD)  
𝑃𝑆𝐷 = 2 ∗ 𝑀𝐴𝐷𝑅 ∗

𝑠%CD	.K	L*MC
𝑣%CD(  

Lateral Time to Collison (LTTC) s L𝑇𝑇𝐶 =
𝑑𝑡
𝑑𝑣.

= 	
𝑡%CD	.K	L*MC

𝑣.,%CD − 𝑣.,L*MC
 

Lateral Time Head Way (LTHW) s 𝐿𝑇𝐻𝑊 =
𝑡%CD	.K	L*MC
𝑣.,%CD

 
Lateral Distance (LD) m 𝐿𝐷 = 𝑡%CD	.K	L*MC 

2.4.3 Preliminary plans for T2.5 
Based on the previously described metrics, the evaluation and analysis of the scenarios is 
performed in T2.5 in post-processing. For this purpose, the following steps will follow:  

• Importing and converting the log files of the simulation 

• Identification of the conflict partners and calculation of the critical values of the 
evaluation metrics 

• Interpretation and visualization of the critical conflict scenariosp08 
Due to the large amount of simulation data, which is generated by a large road network and 
a large number of road users, the evaluation of the data should be fully automated and 
runtime optimized. For this purpose, a tool will be developed that automatically analyses the 
corresponding file format from the simulation. All interactions between vehicles and VRUs 
will be searched in the data and analysed according to their most critical interaction. The 
critical interactions are evaluated based on the selected metrics from T2.2 and matched with 
corresponding thresholds identified in T2.5. Based on this analysis, the interpretation 
between the critical metrics and the model behaviour will follow.  
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2.5 Metrics for PTW Interactions (UNI) 

2.5.1 Motivation 
The literature shows only a few models of PTW driving behaviour for specific manoeuvres, 
and that beyond the thresholds already used for car-to-car interactions metrics are mostly 
unavailable to determine the severity risk of different interactions between PTWs and other 
road users (e.g. PTW-to-car). 

Our severity metric is necessary because, to detect safety-critical scenarios of PTW-to-car 
interactions, the metrics must consider the actual behaviour of PTW riders and the specific 
characteristics of their interactions with cars. The main features that make PTW behaviour 
different is their narrow width and their higher capacity to swerve what makes that the 
conventional metrics such as TTC and PET have to be analysed in a different perspective. 
Figure 18 shows an example of the different behaviour of PTW rider compared to car driver 
comparing the trajectories of Cars and PTWs on a sector of an urban road from Athens 
extracted from pNeuma dataset. Figure 18 shows that whereas car drivers have a clear 
lane-discipline behaviour, PTW riders circulate in a more unpredictable way without 
following the lane-discipline. 

 
Figure 18. Left: Trajectory of 190 PTWs; Right: Trajectory of 303 Cars (Color represents the 

frequency of the trajectories) 
 

To develop better simulation models capable of measuring the risk of traffic conflicts in a 
comprehensive perspective, a better understanding of the unique patterns of interaction of 
PTWs with other road users is needed. The SMoS for PTWs has been developed using 
naturalistic driving data and will estimate the severity of traffic interactions for scenarios 
involving vehicles moving in the same direction as PTWs. The conflicts selected in our 
analysis will be those in which the PTW has to brake as an evasive response to a rear-end 
collision. 
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2.5.2 Technical Description 
Two different approaches have been used to derive the SMoS that required different 
approaches. The first one classifies the severity of traffic conflicts by making the best use of 
the ‘maximal’ data observed with kinematics-based measures such as brake deceleration 
or yaw rate and the driver's use of controls with the PTW via brake, throttle and steer. This 
first classification uses in-vehicle naturalistic data collected by a PTW (local view) from 
Florence roads collected during 2BESAFE project  (Rider Behavioral Patterns in Braking 
Manoeuvres, 2016). The clusterisation of the events has been developed using an 
unsupervised classification algorithm based on K-means and two-step methods. The second 
approach uses bird’s-eye view naturalistic data collected from Athens urban roads in 
pNeuma project (On the new era of urban traffic monitoring with massive drone data: The 
pNEUMA large-scale field experiment, 2020) using the spacing with traffic mix, speeds and 
type of road user as factors of the real-time safety metrics.  

Unsupervised classification method. Florence data. 

Data were collected as part of the EU funded research project 2BESAFE (www.2besafe.eu). 
The study collected naturalistic riding data from five riders for a period ranging from 1 up to 
2 months to investigate near-missed events and other dangerous riding conditions (Rider 
Behavioral Patterns in Braking Manoeuvres, 2016). The set of signals registered was 
comprised of: linear acceleration (three components); roll, yaw and pitch angles and 
velocities; longitudinal speed; brake activation; brake pressures (front and rear circuits); 
throttle position; steering angle; GPS position; turn signals; video: 2 cameras positioned to 
capture the frontal environment (required a minimum 90° field of view) and the rider’s head. 
Data collection was performed with a scooter (Piaggio Beverly Tourer 300ie). This choice 
reflected the fact that in the Florence vehicle area most of PTWs are scooters used for daily 
commuting. The main limitation of these naturalistic data is that information of the 
environment is limited to what video-cameras are able to register. This means that in most 
cases some actors involved are not captured as well as the distances to other users, as the 
recorded videos mainly function to validate traffic conflicts or to code the events with expert 
analysts in a non-automatic and time-consuming task. Filtered data were processed to 
identify all braking events recorded during normal and safety relevant riding conditions. In 
total 3573 braking events, characterized by 36 parameters, were identified (Table 6). 

After an exploratory analysis of the data, the selected braking events to identify safety critical 
scenarios were those where the initial speed was higher than 20 km/h and with a maximum 
deceleration higher than 2 m/s2. Looking at the distribution of the velocity (Figure 19), we 
assumed that the peak on 20 km/h was related to low speed and congested traffic and that 
there is low risk of conflict under those circumstances. Similarly, for the maximum brake 
deceleration, a clear difference was found among braking events with deceleration above 
and under 2m/s2. Thus, we assumed based on the study with cars of Hydén (Traffic conflicts 
technique: state-of-the-art, 1996), that braking events with less than 2m/s2 were related to 
events without conflict or with a small reaction necessary to avoid the conflict.  

All these events, corresponding to 66% of all the 3573 braking events collected, were directly 
considered as ‘normal’ events. The second subset of braking events, which is the one above 
the determined thresholds and corresponds to 34% of the cases, was analysed for cluster 
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analysis using the full set of dynamic variables in order to identify the "less normal" 
behaviour, being associated with possible safety critical events. 

Table 6. Description of the 36 parameters used to characterize the braking event. 
Parameter No. of 

var. 
Description 

Type of braking event 1 Identifies the type of braking action: only front or rear braking; 
combined braking. 

Relative position of 
braking action 

1 Applies to combined braking events. Sequence of activation of the 
front and rear circuits discriminating between the following 
different actions:  
a) action starts with rear or front braking only and ends 
respectively with front or rear braking only (intersected braking 
events); 
b) action starts and ends with rear braking only (front in rear 
braking);  
c) action starts and ends with front braking only (rear in front 
braking). 

Duration  3 Overall braking event duration, and duration for each of the front 
and rear circuits. 

Braking pattern 2 Shape of the braking action (respectively for the front and rear 
circuit): single, double or multiple peaks. 

Start shift 1 Time shift of the pressure onset between the front and rear circuit 
(positive in case the braking action starts with the front circuit). 

Maximum pressure 3 Maximum pressure value in each circuit and their sum. 
Position of maximum 
pressure 

2 Position in time of the maximum pressure in each circuit. The 
position is expressed as a percentage of the overall duration of the 
event (100% corresponds to the end of the event). 

Shift of the maxima 1 Time shift between the maximum pressure of the front and rear 
circuit. 

Velocity 3 Longitudinal velocity at the start and at the end of the braking 
event, and their difference. 

Deceleration 2 Maximum deceleration and mean deceleration within the event. 
Position of max. 
deceleration 

1 Position in time of the maximum deceleration, expressed as a 
percentage of the overall duration of the event (100% 
corresponds to the end of the event). 

Pressures at max. 
deceleration 

2 Pressures in the front and rear circuits corresponding to the 
maximum deceleration. 

Yaw rate 4 Yaw rate at the beginning of the braking event and at maximum 
deceleration, and their absolute values. 

Roll rate 4 Roll rate at the beginning of the braking event and at maximum 
deceleration, and their absolute values. 

Roll angle 3 Roll angle at the beginning of the braking event, at maximum 
deceleration and their difference. 

Steering at max. deceleration 1 Steering position corresponding to the maximum deceleration. 
Throttle 2 Throttle position at the start and at the end of the braking event. 
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Figure 19. Distribution of velocity at start-braking and maximum deceleration of the 3573 braking 

events 
 

Following a principal component analysis (PCA) of the different parameters characterizing 
the braking events, four features were selected for the unsupervised classification algorithm: 
maximum deceleration, maximum yaw rate, throttle position when start braking and brake 
duration. Two clustering algorithms were used to test the stability of the process: two-step 
and K-means. The final cluster analysis was performed with the two-step algorithm 
developed by Chiu et al. (A robust and scalable clustering algorithm for mixed type attributes 
in large database, 2001). The range in the number of clusters was selected based on the 
Schwarz Bayesian Criterion (BIC) and the change in BIC between adjacent number of 
clusters. After each processing, clusters were screened in order to verify if they were 
meaningful for behaviour identification. 

After a two-step cluster analysis of the data using the four features from the PCA, three 
different clusters related to three different behaviours during braking events have been 
identified (Table 7). Cluster 3, referred to as the Potential Risk cluster, which accounted for 
6.2% of the data set, represented the events with the highest maximum deceleration and 
yaw rate and was associated with events that were potentially safety critical. Cluster 1 and 
2 are associated to ‘normal’ events (safe) with short and long duration respectively and are 
labelled as Normal-Short  and Normal-Long. The scatter plots of Figure 20 show clearly how 
maximum deceleration and yaw rate are determinant in identifying the Potential Risk group 
(cluster 3) and how braking duration differentiates the clusters 1 and 2. 
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Table 7. Results of the cluster analysis 
Cluster Variable Mean (s.d.) 

1: Normal-Short 

(n=822) 

(23.0%) 

 

brake duration (s) 3.83 1.63 

max deceleration (m/s2) -2.42 0.33 

max yaw rate (rad/s) 0.04 0.04 

throttle (ini. position) (deg.) 2.06 1.21 

2: Normal-Long 

(n=172) 

(4.8%) 

brake duration (s) 8.82 4.82 

max deceleration (m/s2) -2.51 0.50 

max yaw rate (rad/s) 0.05 0.04 

throttle (ini. position) (deg.) 5.43 4.79 

3: Potential Risk 

(n=223) 

(6.2%) 

brake duration (s) 4.28 2.37 

max deceleration (m/s2) -3.52 1.02 

max yaw rate (rad/s) 0.16 0.13 

throttle (ini. position) (deg.) 2.50 1.79 

Low deceleration or Low speed 
Brake event 

(n=2356) 

(65.9%) 

max deceleration: <2m/s2 
or 

Velocity start-braking: <20km/h 

 

 

 
Figure 20. Scatter plot of the features maximum deceleration vs. maximum yaw rate (left) and brake 
duration with the three clusters identified. Cluster ‘3’ represents the braking events with higher risk. 

Finally, a discriminant analysis was conducted to obtain the predictive equations able to 
categorize the different clusters (specially cluster 3 – Potential Risk) using as independent 
variables the four features previously defined. These equations are used to categorise the 
dependent variable Cluster and to identify cluster 3 associated to a potential safety risk 
scenario. Figure 21 shows the coefficients of the discriminant functions. Function 1 
(representing 57.6% of the variance) is related to max deceleration and max yaw rate and 
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represents the Risk Score, thus confirming the assumption made earlier. Function 2 is 
related to brake duration and throttle position and is represented as Duration Score. Figure 
21, with a graph of individual cases on the discriminant dimension, shows how function-1 
defines mostly cluster 3 and function-2 mostly differentiates cluster 1 from cluster 3. 

 
Figure 21. Left: Standardized Canonical Discriminant Function Coefficients; Right: Cluster 

distributions and Centroid of Canonical Discriminant Functions. 

The classification results (Table 8) reveal that 95% of braking events were classified 
correctly into Normal-Short, Normal-Long or Potential Risk clusters. Braking events with 
Potential risk were classified with an accuracy of 92.4%. The cross validated classification 
showed that overall 94.9% were correctly classified 

Table 8. Classification results table 
  Risk or not  Predicted Group Membership Total 

Normal-
Short 

Normal-
Long 

Potent
ial Risk 

Original 
Group 
Membership
a 

Count 1 – Normal-Short  788 2 32 822 
2 -  Normal-Long 6 162 4 172 
3 – Potential Risk 16 1 206 223 

% 1 – Normal-Short  95.9 .2 3.9 100.0 
2 -  Normal-Long 3.5 94.2 2.3 100.0 
3 – Potential Risk 7.2 .4 92.4 100.0 

Cross-
validatedbc 

Count 1 – Normal-Short  788 2 32 822 
2 -  Normal-Long 7 161 4 172 
3 – Potential Risk 16 1 206 223 

% 1 – Normal-Short  95.9 .2 3.9 100.0 
2 -  Normal-Long 4.1 93.6 2.3 100.0 
3 – Potential Risk 7.2 .4 92.4 100.0 

a. 95.0% of original grouped cases correctly classified. 
b. In cross validation, each case is classified by the functions derived from all cases other than that case. 
c. 94.9% of cross-validated grouped cases correctly classified. 

 
  

Feature Function 

1  

(57.6%) 

2 

(42.4%) 

brake duration .137 .917 

max deceleration .895 -.180 

max yaw rate  -.858 .101 

throttle (ini. position) .201 .781 
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Motorcycle Crash Potential Index (MCPI). Athens data. 

The metric developed for PTW-to-car interactions, labelled as Motorcycle Collision Potential 
Index (MCPI), is based on the Crash Potential Index (CPI) defined in (Calibration and 
validation of simulated vehicle safety performance at signalized intersections., 2008) for 
vehicle-to-vehicle conflicts where vehicles were mostly cars. The metric considers multiple 
factors such as TTC, time headway and DRAC and stablishes the risk index based on a 
distribution of MADR for different PTW rider performances. One of the reasons for the 
difficulty of implementing the CPI as a risk metric is the need for on-the-field measurements 
with comprehensive and detailed vehicle tracking data.  

pNeuma Data 

The naturalistic data used corresponds to the pNeuma dataset (On the new era of urban 
traffic monitoring with massive drone data: The pNEUMA large-scale field experiment, 
2020), which represents an urban environment (city of Athens) that includes a significant 
amount of PTW users to develop our metrics. The dataset contains detailed trajectories of 
tracked vehicles from the weekday morning rush hour (between 8:00 and 10:30), with a time 
frequency of 0.04 s (25 frames per second). The main limitation of these naturalistic data is 
that vehicles’ lengths and widths are not provided, so considering that the trajectories are 
related to the centroid of the vehicle the distances front-bottom vehicles have to be estimated 
based on the average dimensions (Table 9).  

Table 9. Dimensions assigned to the vehicles for the  
              MCPI analysis 

Vehicle Length (m) Width (m) 
Car 5 2 

PTW 2.0 1 
Bicycle 1.8 0.8 

BUS 12.5 4 

Medium Vehicle 5.83 2.67 

Heavy Vehicle 12.5 3.33 

To develop the MCPI safety metric, it was decided to use two sectors with different 
characteristics that may represent different PTW rider behaviour with different types of 
conflicts. By doing so, the variability of PTW rider behaviour is also better captured and a 
more robust metric can be defined. Two one-way urban road sections of 500-550 meters 
length with different characteristics have been selected: i) a one-lane section; ii) a 4-lanes 
section (Figure 22). The two sections correspond to different travel speed profiles with PTW 
as Figure 23 shows. These two sectors were selected because they were similar to those 
of the network Town 7 used in AIMSUN for T2.5. On the one hand, the 4-lane section 
corresponds to an urban road with an average speed of 50 km/h as that of Town 7 network 
for microsimulation without traffic congestion. On the other hand, on the 1-lane section, PTW 
speed is more similar to that of a congested traffic scenario and, in addition, PTWs are less 
likely to overtake because the road is narrower and, consequently, they maintain the target 
condition of our study, i. e. the car-following condition, for a longer time.  
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Figure 22. Representation of the simulation and trajectories of the 4-Lanes urban road section 

 

     
Figure 23. Distribution of travel speed of PTWs: 4-Lanes urban road vs. 1-Lane urban road 

 

A subset of the naturalistic data with the characteristic detailed in Table 10 has been used 
to develop and assess the performance of the MCPI risk metrics.  

Table 10. Characteristics of the data used for the MCPI development 
Sector Traffic-

volume 
Average 

Speed for 
PTWs 

Number 
of days 

Time car-following 
(PTW) cases 

Length 

1-Lane Low 50 km/h 5 360min 1200 540m 

4-Lanes High 30 km/h 4 270min 98 550m 
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MCPI 

MCPI is defined as the probability that a PTW vehicle DRAC exceeds its maximum available 
deceleration rate MADR(PTW) during a given time interval. The MCPI index is obtained using 
an equation of the form 

𝑀𝐶𝑃𝐼* =
∑ 𝑃I𝑀𝐴𝐷𝑅(BOP) ≤ 𝐷𝑅𝐴𝐶*,.J · ∆𝑡
."(
.R.*(

𝑇*
 

Where: 

𝑀𝐶𝑃𝐼* = 𝑐𝑟𝑎𝑠ℎ	𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙	𝑖𝑛𝑑𝑒𝑥	𝑓𝑜𝑟	𝑃𝑇𝑊	𝑖	
𝐷𝑅𝐴𝐶*,. = 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑	𝑡𝑜	𝑎𝑣𝑜𝑖𝑑	𝑡ℎ𝑒	𝑐𝑟𝑎𝑠ℎ	
𝑀𝐴𝐷𝑅(BOP) = 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑜𝑓	𝑃𝑊𝑇	𝑟𝑖𝑑𝑒𝑟		
																													𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	𝑑𝑢𝑟𝑖𝑛𝑔	𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦	𝑏𝑟𝑎𝑘𝑖𝑛𝑔	
𝑡𝑖* = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑡𝑖𝑚𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝑓𝑜𝑟	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑖	
𝑡𝑓* = 𝑓𝑖𝑛𝑎𝑙	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑡𝑖𝑚𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙	𝑓𝑜𝑟	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑖	
∆𝑡 = 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙	
𝑇* = 𝑡𝑜𝑡𝑎𝑙	𝑒𝑣𝑒𝑛𝑡	𝑡𝑖𝑚𝑒	𝑓𝑜𝑟	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑖 

The simulation algorithm updates the DRAC at each time interval (0.1 seconds) according 
to the response of the drivers in the preceding time interval. As an example, if at a certain 
time interval (tik) the driver of the PTW applies a deceleration rate greater than the DRAC, 
then at the next time interval (tik+1) the DRAC becomes lower, assuming that the speed of 
the leading vehicle is constant. Similarly, if the leading vehicle starts braking or increases 
deceleration, the DRAC will be reduced for a constant braking deceleration of the PTW that 
follows the vehicle. 

To consider the braking performance of PTW riders with different abilities, the MADR is 
included as a stochastic component where PTW riders are expected to act differently during 
a braking event with a specific DRAC. The analysis in this task considers PTWs operating 
under good conditions, i.e. dry road and daylight. For these set of conditions, we used the 
distribution of emergency braking in field experiments with initial speeds from 40 to 60 km/h 
coming to a full stop that were performed by 13 riders of different rider skills (Emergency 
braking performance of motorcycle riders: skill identification in a real-life perception-action 
task designed for training purposes, 2019) obtained from previous project MOTORIST of the 
FP7 of the European Union. Figure 24 represents the kernel distribution of the deceleration 
achieved in the 149 emergency events, the adjusted normal distribution, and the example 
of the probability of collision for a PTW in a conflict with a DRAC of 7m/s2. 
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Figure 24. (left) Distribution of decelerations for emergency braking tests (n=149 test); (right) 

probability of crash of 65.4% for a DRAC of 7m/s2 
  

Identifying car-following events  

The algorithm developed examined all braking events occurring on the two sections of urban 
road selected for this work. Potential lead vehicles were then identified during each brake 
application following an algorithm for car-following events (Methodology for identifying car 
following events from naturalistic data, 2014) summarized below. 

First, to be considered car-following behaviour by the PTW rider, the object ahead had to 
have a time headway of less than 3 s (Research Board, 2010). Then, those objects that 
were within 2m of the vehicle trajectory during 65% of the brake application were identified 
as potential lead vehicles. For multiple potential lead vehicles, the object with a distance 
from the vehicle trajectory of less than 1.5 m and/or the object closest to the PTW vehicle 
was chosen as the lead vehicle. Once the lead vehicle was identified, the safety distances 
and the distributions of TTC, PET and DRAC during the 3 seconds before and 3s after brake 
application were identified. 

Due to the uncertainty associated with the assumed path width of the vehicle in front, for the 
MCPI calculation we have classified the overlap as Some Overlap (percentage of overlap 
less than 100%) and Full Overlap (see Figure 25) based on the approach of previous studies 
with cars  (Chen, 2016). In the case of Full Overlap the MCPI consider the crash probability 
as a function of the DRAC and MADR(PTW)  as defined above. While for cases with Some 
Overlap, given the small width of PTWs and their high manoeuvrability to swerve, the MCPI 
applies a correction factor proportional to the overlap degree. Following the same process, 
considering the frequent non-lane discipline behaviour observed on the PTW riders, we had 
to stablish a range to the PTW path to stablish when a leading object was a potential object 
to collide (and thus with its corresponding TTC and MCPI value). When the PTW is out of 
the path of the lead vehicle (set to 1.5m distance between PTW and car centroids), then, 
the car-following condition is considered ended, the TTC is not evaluated and the 
instantaneous MCPI is reduced to no risk values. 
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Figure 25. Example of Full and Some Overlap of path for PTW following a Car. 

 

Results 

Figure 26 shows a histogram of the results of the MCPI analysis for 1-lane and 4-lanes 
sections. The results of the MCPI of both sections are comparable despite the different 
characteristics of the traffic. Contrary to what might be expected, the 1-line section involved 
a higher rate of dangerous interactions (almost 20% of the car-following events with braking) 
than the 4-line section (approx. 8%). The results suggests that the PTWs in a narrower road 
take more risk keeping safety distances and overtaking, despite riding with lower speeds.  

             

 
Figure 26. MCPI distribution for braking events in sector 4-Lanes 

As commented previously, vehicle dimensions were not fully measured in the pNeuma 
dataset but were estimated using the average size of each vehicle. Considering that PTWs 
do not usually ride in the centre of the lane, their fast-swerving capability and the short safety 
distances taken by riskier riders, the MCPI is sensitive to cases where the actual size of the 
lead car differs from the estimated size. In particular, in cases where the actual length of the 
lead car is less than the a priori estimated 5 metres in length or 2 metres in width, if the PTW 
rider tailgates the lead vehicle at a distance less than difference between the actual and the 
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estimated length, the MCPI metric will consider a crash. This is the reason why the MCPI 
values get values of 1 in some cases, even though no collision has been identified. Figure 
27, where time 0 is the instant of maximum braking, shows an example of such a case, in 
which the PTW reaches a very short headway distance before overtaking the lead car at 
instant -0.5s. In the figure, Y and X distance represents the longitudinal and lateral distance 
respectively between the PTW and the identified Most Important Object (MIO), distance 
time=0s corresponds to the highest brake deceleration instant. Therefore, the MCPI in these 
cases will not identify an actual crash, but a high-risk manoeuvre that could lead to a crash, 
regardless of the fact that specific events such as the one in this example end without a 
collision. 

  
Figure 27. Example of overtaking with overlapping path 

Figure 28 and Figure 29 show the MCPI distribution of each dataset grouped into 30-minute 
sets. The results show that there are not significant changes in the MCPI to be noted 
between the different datasets. 
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Figure 28. 4-Lanes section: MCPI by set of 30min data analysed 
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Figure 29. 1-Lane section: MCPI by set of 30min data analysed 

 

Validation 

The safety critical scenarios identified can be reviewed through simulation can be reviewed 
by performing a simulation with driving scenarios created with Matlab® R2022a, where the 
trajectories extracted from the naturalistic driving data over time and the road are 
programmed. In the absence of data on actual vehicle dimensions, the dimensions of 
vehicles such as PTWs, cars and buses are assumed to be cubic in shape and with a default 
value for length, width and height corresponding to that of a typical vehicle in its class. Thus, 
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validation is carried out by using the information of the trajectories of the road users involved 
and running a simulation of the critical events encountered. The simulation of the events 
allows a qualitative assessment of the risk of collision based on the behaviour of the actors 
involved in the conflict. Figure 30 and Figure 32 show two examples of safety critical scenario 
identified.  

     
Figure 30. Car-following + overtaking with short safety distance. Ego vehicle (PTW) and MIO (car) 

Error! Reference source not found. shows a case of overtaking with short safety distance. 
The graph from the left shows how the PTW (ego) reduces the speed from 83km/h to less 
than 50km/h during the car-following and then accelerates to overtake the car (MIO). As can 
be seen in Figure 30 (right) representing the distances, the overtaking is done between 
seconds 5 and 6. In this case, the overtaking has been done (total distance moving to 
negative values) with a lateral distance between centroids of 1.7m, that for a width car of 2m 
and a width PTW of 1m would represent a minimum lateral distance (0.2m). Figure 31 shows 
a sequence of snapshots of the car-following plus overtaking commented above. 

 
Figure 31. Simulation of real case of car-following + overtaking with short safety distance. Ego 

vehicle (PTW) in black and MIO (car) in red.  
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Figure 32. Example of High brake deceleration to avoid rear-end in sector B (4-lanes). 

Finally, we use as example the case of hard brake to avoid rear-end collision presented in 
Figure 32 where at certain point the PTW (ego) must achieve a very high deceleration to 
avoid a rear-end collision. The simulation of the event confirmed that it corresponds to a 
near-miss traffic conflict where the ego PTW is running fast and overtaking other road users 
without lane-discipline until it has to brake achieving the minimum headway distance (Figure 
33) after a peak of deceleration of almost 9m/s2. 
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Figure 33. Simulation with three views of event with high CPI in 4-Lanes sector, PTW ego vehicle is 

represented in yellow. 
 

2.5.3 Preliminary plans for T2.5 
The MCPI metric will be used in the different micro-simulations in AIMSUN Next performed 
in T2.5, in order to assess the effect of the inclusion of autonomous vehicles compared to 
the reference scenarios without autonomous vehicles on: a) the number of PTW-to-car 
conflicts encountered; b) the typology of conflicts.. The data extracted from the road users 
during the microsimulations corresponds to the road users trajectories, speeds and road 
network. No application of the metrics based on cluster analysis can be done because the 
microscopic simulation lacks of full information of the dynamics (e.g. yaw rate) or actuators 
of the PTW (e.g. throttle). It is important to note that the vehicle models embedded in the 
AIMSUN simulation platform operate in a collision-free environment, so that AIMSUN forces 
unachievable decelerations (i.e. greater than 1g) to avoid collisions that would occur in the 
real world. 

The comparation with and without autonomous vehicle can be done analysing the conflicts 
of different sectors of the road network (e.g. those from Figure 34. In order to find more 
traffic conflicts where the motorcycle had to brake hard, a delay of 2.5s in the response time 
of the PTW riders was forced in 25% of the events. As Figure 35 shows, the MCPI identified 
2 out of 67 cases with car-following events as potential crash for the simulations with delay 
in the response time forced and 0 out of 42 cases for the simulation with no delays in the 
response time of the PTWs. 
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Figure 34. Identification of sectors S1, S2 and S3 of Town 7 that will be analysed during T2.5 

 

 
Figure 35. MCPI in section S1 for two different conditions. 

For a second validation to check how MCPI works to identify conflicts where the car crosses 
the path of the PTWs, we generated a network scenario consisting of an X-intersection 
where the PTWs had to give the right of way (see Figure 36) and the PTW violated the right 
of way of the cars. 

As expected, the frequency of cases with the MCPI identifying a crash is high.. In 68 out of 
243 cases (28%) where the PTW crossed the intersection with right of way violation, the 
MCPI identify a crash conflict (Figure 37). Figure 38 shows one case of those identified 
where on the one hand the car (MIO) is driving at constant speed and crossing the 
intersection in front of the PTW and on the other hand the maximum deceleration of the 
PTW (ego) to avoid the collision in the last instant is higher than 1g (i.e. potential crash). 
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Figure 36. Intersection scenario for simulation with yield sign. 

 

 
Figure 37. MCPI for scenario with right of way violation at intersection 

 

    
Figure 38. Example of MCPI = 1 where AIMSUN makes PTW (Ego) brake to more than 1g to avoid 

the crash with the crossing car(MIO) at intersection. 
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3. Conclusions & Recommendations 
The T2.2 partners have developed a number of metrics to understand the severity of traffic 
interactions. Their work was focussed separately in three types of interactions: Motor 
vehicles (TNO, TUD), VRUs (IKA), and PTWs (UNI). 
Each partner provided in Section 2 a detailed account of the derivation of their metrics, on 
how they were calibrated and validated, and their main observations about the benefits of 
their metrics and their next step. Here we provide a summary of their conclusions. 

TNO developed two types of metrics for motor vehicle interactions based on two separate 
techniques: unsupervised anomaly detection and driver profiling. The former is based on 
machine learning principles and was shown to work when applied to driving interactions in 
controlled environments such as rush-hour highway driving. The technique was not well 
suited for urban setting containing multimodal traffic. The second method, driver profiling, is 
able to identify clusters of drivers with different profiles (e.g., aggressive, typical) in urban 
traffic. The initial results show that the profiles are more easy to interpret than unsupervised 
anomaly detection from a safety perspective. For this reason, profiling will be used in T2.5 
to perform a differential analysis between simulations without and with automated vehicles 
(AVs) to test the hypothesis of whether the introduction of AVs change the profile clusters 
(see Section 2.2.5). 

TUD developed another metric for motor vehicle interactions based on artificial field theory. 
The metric, called probabilistic driving risk field (PDRF), was calibrated using NDD data and 
validated using simulations studies and NDD data. In the former, a critical driving scenario 
was set up (hard braking by a lead vehicle, requiring the vehicle under test to perform an 
emergency stop) and  simulated multiple events by varying initial longitudinal velocities for 
the ego and lead vehicles. Only some of the events led to crashes. Both TTC and PDRF 
were used to predict (before the potential crash moment) whether the scenario would 
become a crash or not. The study showed that PDRF more accurately predicted the crash 
events than TTC. This was also confirmed using NDD data instead of simulated data 
(Probabilistic field approach for motorway driving risk assessment, 2020; Probabilistic Risk 
Metric for Highway Driving Leveraging Multi-Modal Trajectory Predictions, 2022). In T2.5, 
the PDRF distributions from simulations without and with AVs will be computed, compared 
and analysed to determine the effect of AVs on safety. See Section 2.3.3 for details. 

IKA analysed existing surrogate metrics of safety developed to assess motor vehicle 
interactions to understand their suitability in characterizing VRU interactions. For 
pedestrians, IKA determined that deceleration to safety time and pedestrian-centric post 
encroachment time and time headway are the most relevant metrics. For cyclists, IKA 
proposed cyclist-centric variants of well-known longitudinal interaction metrics such as time 
to collision and time headway, as well a new versions of such metrics suitable for lateral 
interactions. These metrics and their associated criticality thresholds will be used to identify 
critical interactions with VRUs in the T2.5 simulations, and an analysis will be conducted to 
determine whether they are related to the presence of AVs (see Section 2.4.3).  
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UNI developed two new metrics for PTW-to-car interactions based on two separate 
techniques: Unsupervised classification method and motorcycle crash potential index 
(MCPI). The first metric, using in-vehicle naturalistic data, identified three different 
behaviours during braking events, where one was referred as Potential Risk cluster. The 
MCPI metric characterizes longitudinal interactions for PTWs and stablishes the risk index 
based on a distribution of MADR for different PTW rider performances. The former metric 
was calibrated using NDD from Athens The ability of this metric to identify critical events by 
relating the rate of deceleration required to avoid a collision to the braking capabilities of the 
vehicle and the actual braking abilities of the rider was confirmed by simulation studies 
including two types of critical interaction involving hard braking of the motorcycle. In T2.5 
These metrics will be used to determine whether the presence of AVs influence the number 
of critical interactions with PTWs (see Section 2.5.3). 

Although the partners worked independently on their metrics, they found a number of 
common challenges: 

• There was limited access to well-processed NDD data that allows for accurate 
measurement of vehicle sizes, and inter-vehicle distances. This made it difficult 
to estimate accurate certain metrics including collision risk. 

• A standard toolchain to acquire and process infrastructure-based data (e.g., video 
of traffic) in order to extract vehicle characteristics (e.g., size) and trajectories is 
not available. As a consequence, several partners had to develop their own 
custom methods to process NDD. 

• The results based on algorithms trained on NDD are difficult to generalize. 
Although driving behaviour may be uniform within countries, it may vary across 
countries. Hence, the calibration of some of the metrics may need to be updated 
in order to be applicable to situation other than the ones represented by the 
training data. 

• There is no ground-truth for severity metrics. That is, severity (or safety, or risk) 
are not fundamental properties but conventions. That makes it hard to compare 
the outcomes of specific metrics in absolute terms. For instance, two metrics 
based on completely different principles could declare the same interaction as 
critical while awarding that interaction very different severity values. This leads to 
two important, and maybe overly ambitious, recommendations: 

• A comparative analysis of several severity metrics should be conducted across 
the EU to determine appropriate acceptability/criticality thresholds. Further, an 
serious attempt should be pursued with multiple stakeholders (OEMs, 
government regulators, academia, etc.) to reach an agreement or convention on 
how criticality should be defined and measured. 
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• The aforementioned effort should lead to creation of a “severity ground truth”. 
Since such a ground truth would be location based, a concerted effort should be 
made to acquire NDD from enough representative locations across Europe. 

• The successful use of the metrics developed in T2.2 for simulation analysis 
depends on how well these simulation can be calibrated. If they cannot be well 
calibrated, the T2.2 metrics will not be to produce numerically realistic results. In 
such case, these metrics can only be used for comparative analysis. 

 
Finally, the work in T2.2 yielded high-quality results that have been documented in at least 
two journal publications and one conference paper: 

• de Gelder, E.; Adjenughwure, K.; Manders, J.; Snijders, R.; Paardekooper, J.-P.; 
Op den Camp, O.; Tejada, A. & De Schutter, B., “PRISMA: A Novel Approach for 
Deriving Probabilistic Surrogate Safety Measures for Risk Evaluation”, Accident 
Analysis and Prevention, under review, 2021  

• X. Wang, J. Alonso-Mora, and M. Wang, “Probabilistic risk metric for highway 
driving leveraging multi-modal trajectory predictions,” IEEE Transactions on 
Intelligent Transportation Systems, 2022. (DOI: 10.1109/TITS.2022.3164469) 

• X. Wang, Z. Li, J. Alonso-Mora, and M. Wang. "Prediction-Based Reachability 
Analysis for Collision Risk Assessment on Highways." IEEE Intelligent Vehicles 
Symposium, Aachen, Germany (2022). (https://arxiv.org/pdf/2205.01357.pdf) 
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