

D3.1 ACTIVE SAFETY SYSTEMS SPECIFICATION AND RISK ANALYSIS

Primary Author(s)	Stella Nikolaou, Mary Panou CERTH/HIT
Related Work Package	3
Version/Status	1.0 Final version
Issue date	31/08/21
Deliverable type	Report
Dissemination Level	СО
Project Acronym	SAFE-UP
Project Title	proactive SAFEty systems and tools for a constantly UPgrading road environment
Project Website	www.safeup.eu
Project Coordinator	Núria Parera Applus IDIADA

861570

Grant Agreement No.

Co-Authors

Name	Organisation
Christian Loeffler	Bosch
Berend Kupers	TNO
Xavier Sellart	IDIADA
Jacint Castells	IDIADA
Ioannis Gragkopoulos	CERTH/HIT
Ioannis Tsetsinas	CERTH/HIT
Maminirina Ranovona	ТМЕ
Juan Alamo	ТМЕ
Daniel Weihmayr	THI
Leon Tolksdorf	THI

Document Distribution

Version	Date	Distributed to
0.5	26/08/2021	Coordination Team
1.0	31/08/2021	Submission to the EC System
		Approved by the EC

Copyright statement

The work described in this document has been conducted within the SAFE-UP project. This document reflects only the views of the SAFE-UP Consortium. The European Union is not responsible for any use that may be made of the information it contains.

This document and its content are the property of the SAFE-UP Consortium. All rights relevant to this document are determined by the applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are not to be used or treated in any manner inconsistent with the rights or interests of the SAFE-UP Consortium or the Partners detriment and are not to be disclosed externally without prior written consent from the SAFE-UP Partners.

Each SAFE-UP Partner may use this document in conformity with the SAFE-UP Consortium Grant Agreement provisions.

Executive summary

This Deliverable falls under the SAFE-UP Project Work Package 3 "Active safety systems for vehicle-VRU interaction" and specifically under the Task 3.1 "Active safety system specification and risk analysis". It is a purely technical document that targets to support the efficient monitoring of the technical developments within WP3.

The actual version is a preliminary document that includes information collected and consolidated before the development of the three Demos. The updated and final version of this document will be available on Month 26 of the project.

Section 1 presents the methodology following for the two main activities of T3.1; Technical specifications and Risk Assessment.

Section 2 presents the outcomes of the technical specifications for each Demo separately. Detailed information on modules technical specifications have been annexed to facilitate the reader.

In Section 3, the preliminary risk assessment for each Demo is presented, for each of the main risk categories; technical, behavioural, organisational and legal risks.

Finally, Section 4 provides the discussion points and the conclusions of this Deliverable.

Table of contents

1.	Introduction	.10	
2.	Architecture and Technical Specifications	.11	
2.1	Introduction & Methodology	. 11	
2.2	Demo 2	. 12	
2.2.1	Architecture	.13	
2.2.2	Technical Specifications	.14	
2.3	Demo 3	.16	
2.3.1	Architecture	.17	
2.3.2	Technical Specifications	21	
2.4	Demo 4	.26	
2.4.1	Architecture	26	
2.4.2	Technical Specifications	.31	
3.	A-priori Risk Assessment	.34	
3.1	Methodology	.36	
3.1.1	Risks severity and mitigation possibility	.41	
3.1.2	Risks analysis template	.42	
3.2	Results	.43	
4.	Discussion & Conclusions	57	
Refer	ences	58	
Арре	ndix A: Technical specifications template	59	
Арре	ndix B: Demo 2 Detailed Technical Specifications	.63	
Арре	Appendix C: Demo 3 Detailed Technical Specifications67		
Арре	ndix D: Demo 4 Detailed Technical Specifications	.79	

List of figures

Figure 1: Test vehicle under increasing bad weather conditions (THI)
Figure 2: Demo 2 Physical architecture diagram13
Figure 3: Demo 2 Communication architecture diagram14
Figure 4: Demo 3 Emergency trajectory planning example (green lines show desirable trajectories, red trajectories are undesirable.)
Figure 5: Demo 3 Vehicle physical architecture diagram18
Figure 6: Demo 3 Communication architecture diagram19
Figure 7: Demo 3 Physical layout of the simulation environment
Figure 8: Demo 3 Software architecture diagram20
Figure 9: SAFE-UP Demo 4 overview
Figure 10: Demo 4 Communication architecture diagram27
Figure 11: Demo 4 Vehicle physical architecture diagrams; (a) components' position on the vehicle, (b) components' interfaces
Figure 12: Demo 4 RSU physical architecture diagram
Figure 13: Demo 4 VRU core physical architecture diagram
Figure 14: Product development lifecycle
Figure 15: Risk analysis process

List of tables

Table 1: Overview of Demo 2 physical modules.	14
Table 2: Demo 2 communication interfaces.	15
Table 3: Demo 2 elaboration units	16
Table 4: Overview of Demo 3 vehicle physical modules	21

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement 861570.

Table 5: Demo 3 actuators. 21
Table 6: Demo 3 communication interfaces. 22
Table 7: Demo 3 elaboration units. 22
Table 8: Overview of Demo 3 software modules
Table 9: Demo 3 software interfaces. 25
Table 10: Overview of Demo 4 physical modules. 31
Table 11: Demo 4 HMI modules
Table 12: Demo 4 communication interfaces. 33
Table 13: Severity level analysis
Table 14: Occurrence level analysis. 38
Table 15: Detectability level analysis. 39
Table 16: Recoverability level analysis. 40
Table 17: Correlation of the Risk Number with the overall risk Severity level
Table 18: Severity and mitigation possibility scales. 41
Table 19: Failure mitigation possibility levels and their definition
Table 20: Detailed Risk analysis template, including mitigation strategy
Table 21: Number of potential risks gathered per WP3 Demo and severity level
Table 22: Demo 2 potential risks. 43
Table 23: Demo 3 potential risks. 44
Table 24: Demos 2 & 3 common potential risks 48
Table 25: Demo 4 potential risks

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement 861570.

List of abbreviations

Abbreviation	Meaning
AD	Autonomous Driving
AEB	Autonomous Emergency Braking
AES	Autonomous Emergency Steering
AV	Autonomous Vehicles
СА	Consortium Agreement
CAN bus	Controller Area Network
CAV	Connected Automated Vehicles
C-ITS	Cooperative Intelligent Transport Systems
СРМ	Collective Perception Message
D	Deliverable
DA	Driver Assistance
EC	European Commission
ECU	Electronic Control Unit
ESP	Electronic Stability Program
FMEA	Failure Mode and Effects Analysis
GA	Grant Agreement
GNSS	Global Navigation Satellite System
НМІ	Human-Machine Interaction
IMU	Inertial Measurement Unit
LDM	Local Dynamic Map
N/A	Not Applicable
OBU	On Board Unit
OEM	Original Equipment Manufacturer
RN	Risk Number
ROS	Robot Operating System
RSU	Road-Side Unit
RTK	Real-time kinematic positioning

Abbreviation	Meaning
SotA	State-of-the-Art
Т	Task
TBD	To be defined
TSS	Toyota Safety Sense
V2X	Vehicle-to-everything
VRU	Vulnerable Road User
WP	Work Package

1. Introduction

This Deliverable consolidates the preliminary technical overview and risk assessment of the three active safety systems under development within WP3; Demo 2, Demo 3 and Demo 4. The scope of Demo 2 is to enhance the interaction between vehicles and VRUs under bad weather conditions by analysing the effect of bad weather on different sensor types and configurations for State of the Art (SotA) and future technology. Demo 3 develops advanced vehicle dynamics intervention functions to avoid or mitigate critical events. The demonstrator will include a vehicle with combined trajectory control algorithm for both emergency braking and steering. Finally, Demo 4 develops a VRU safety system based on V2X technology that provides enhanced communication between vehicles, road infrastructure (RSU installed on traffic light) and VRUs (pedestrians and cyclists).

The purpose of this document is mainly to support the technical coordination and monitoring of the three relevant Demos, as well as to describe a-priori the foreseen risks during the development phase. It is therefore working as an internal technical document, supporting the work of the system developers throughout the process, as well as the related work that will be performed in T3.6 focusing on technical verification.

An updated version of this Deliverable is scheduled for Month 26 of the project (July 2022), when all three Demos have completed their development phase. This updated version will include the final technical specifications, as well as the a-posteriori risk assessment with any risks that occurred and the related mitigation strategies employed for each Demo respectively.

2. Architecture and Technical Specifications

2.1 Introduction & Methodology

This Section presents the architecture diagrams and the main physical and software (where applicable) modules technical specifications for each of the three active safety systems developed within WP3; Demo 2, Demo 3 and Demo 4. Demo 2 focuses on advancing the vehicle VRU detection capabilities in bad weather conditions, Demo 3 develops an advanced system for vehicle reaction strategies to avoid collisions with VRUs under normal and bad weather conditions, whereas Demo 4 provides enhanced perception to the vehicle through V2X communication with infrastructure sensors (RSU) and connected VRUs, while providing on-time warnings to all connected traffic participants (drivers, pedestrians and cyclists).

All three Demos represent complex systems that require concise specification of their technical requirements, so that both development and integration phases run smoothly and the initial technical targets are reached. Further to supporting the development process, the technical specifications will also support the work that will be performed in the technical verification task (T3.6), providing a basis to assess and evaluate the technical performance of each Demo.

In order to collect the technical specifications of each WP3 Demo, a template was created and circulated among the partners (*see Appendix A*). The template is in a tabular form and is divided into 4 sections:

- Introduction: *including information about the manufacturer, the responsible partner, processing units and communication (I/O ports and communication network)*
- Performance section: giving details about the item performances (e.g. for a sensor: physical quantity measured, along with accuracy, frequency,)
- Physical specifications: including information about integration aspects (weight, size, operating temperature range, power supply, ...)
- Environmental Specifications: in case the item has or should have specific characteristics in terms of water resistance, vibration resistance.

Additional specifications are provided for supporting components, such as HMI modules, interface elements and elaboration units, whereas any unnecessary specifications are

omitted. Information that are not yet defined are marked with 'TBD' (to be defined), whereas not applicable information are marked with 'N/A'.

For facilitating the reading, the main Demo sub-sections present the summary tables of the main technical components, whereas the detailed technical specifications are annexed separately for each Demo.

Since this is the first version of the technical specifications captured before the three Demos (Demo 2, 3 and 4) are actually developed, the relevant information is preliminary and subject to changes. The final and complete information will be available on Month 26, in accordance to the description and timeline of Task 3.1.

2.2 Demo 2

The scope of Demo 2 is to enhance the interaction between vehicles and VRUs under bad weather conditions by analysing the effect of bad weather on different sensor types and configurations for SotA and future technology. Baseline tests with the actual sensor configuration will demonstrate the SotA performance. A test-based evaluation scheme will be validated with simulative effectiveness evaluation as a comparison to physical testing. Verification tests will show the object detection limits at adverse weather conditions for both SotA and future sensor configurations. The results will validate object detection as a function of weather conditions, distance, trajectory angles and speed differences.

Figure 1: Test vehicle under increasing bad weather conditions (THI).

A demonstration car with advanced sensor configuration and VRU detection algorithms for safe object detection in all weather conditions will be used (Bosch test vehicle). The focus will be VRU detection in heavy rain and fog conditions with different environment objects nearby.

Demo 2 will use environmentally robust sensor concepts and innovative sensor data postprocessing features for safe object detection both in the near-field area and bad weather conditions.

2.2.1 Architecture

2.2.1.1 Physical architecture

The physical architecture of Demo 2 vehicle consists of sensors, actuators and elaboration units.

One front, one rear, two front corner and two rear corner radar sensors with $+/-60^{\circ}$ field-ofview each, a front stereo video sensor, as well as a rooftop Lidar sensor with $+/-360^{\circ}$ fieldof-view are used to detect moving and stationary objects within and next to the vehicle's path.

The object information of each sensor is directly sent to the car PC, where the information of the different sensors can be measured and evaluated.

The vehicle platform is a Bosch test vehicle, specifically used for Demo 2 within SAFE-UP.

Figure 2: Demo 2 Physical architecture diagram.

2.2.1.2 Communication Architecture

Demo 2 communication architecture consists of Ethernet connections from all sensor ECUs to the car PC, enabling internal signal access for measurement and rapid prototyping purposes.

Actuation commands can directly be sent from the car PC to the braking and steering system over the chassis CAN.

2.2.2 Technical Specifications

2.2.2.1 Demo 2 Physical modules

The physical components of Demo 2 are presented in Table 1 below. The technical specifications for each of the listed sensors is available in *Appendix B* of this document (can be also assessed directly via hyperlink). Table 2 and Table 3 consolidate the Demo 2 interfaces and elaboration units respectively.

Table 1: Overview of Demo 2 physical m	modules.
--	----------

Demo 2 Modules/ Sensors				
ID	Name	Туре	Responsible Partner	Usage in Demo
M1	Front Radar Sensor	Radar Sensor	Bosch	Data Collection
M2	Rear Radar Sensor	Radar Sensor	Bosch	Data Collection
М3	Left Front Corner Radar Sensor	Radar Sensor	Bosch	Data Collection
M4	<u>Right Front Corner</u> <u>Radar Sensor</u>	Radar Sensor	Bosch	Data Collection

Demo 2 Modules/ Sensors				
ID	Name	Туре	Responsible Partner	Usage in Demo
M5	<u>Left Rear Corner</u> <u>Radar Sensor</u>	Radar Sensor	Bosch	Data Collection
M6	<u>Right Rear Corner</u> <u>Radar Sensor</u>	Radar Sensor	Bosch	Data Collection
M7	<u>Front Stereo Video</u> <u>Sensor</u>	Video Sensor	Dream Chip	Data Collection
M8	Rooftop Lidar Sensor	Lidar Sensor	Hesai	Data Collection

Table 2: Demo 2 communication interfaces.

Demo 2 Interfaces					
C	AN				
Working Frequency	N/A	GHz			
Data Rate	500	kbps			
Eth	ernet				
Working Frequency	N/A	GHz			
Data Rate	100	Mbps			
US	USB 2.0				
Working Frequency	N/A	GHz			
Data Rate	480	Mbps			
Blueto	ooth 4.0				
Working Frequency	2.4	GHz			
Data Rate	1 to 3	Mbps			
LTE					
Working Frequencies	700, 800, 900, 1800, 2600	MHz			
Data Rate	up to 326.4 (down) up to 86.3 (up)	Mbps			

Demo 2 Interfaces			
802.11p			
Working Frequency	5.9	GHz	
Data Rate	6	Mbps	

Table 3: Demo 2 elaboration units.

	Demo 2 Elaboration Units					
ID	Name	Туре	Responsible Partner	Usage in Demo		
E1	ROS PC	Linux based PC	Bosch	Object Fusion and Tracking, Data collection		
E2	Measurement PC	Windows based PC	Bosch	Data collection		
E3	Rapid Prototyping ECU	Vector/dSpace ECU	Bosch	open		

2.3 Demo 3

Demo 3 develops advanced vehicle dynamics intervention functions to avoid or mitigate critical events. The demonstrator will include a vehicle with combined trajectory control algorithm for both emergency braking and steering (Bosch test vehicle).

Figure 4: Demo 3 Emergency trajectory planning example (green lines show desirable trajectories, red trajectories are undesirable.).

For the emergency steering functionality, electronic power steering as well as differential braking and the combination of both will be investigated and compared regarding their accident avoidance potential in the defined scenarios.

In case of emergency, advanced intervention functions will be triggered to avoid critical events, including crash mitigation manoeuvres, enhanced emergency functions for crash avoidance (AES, AEB), and minimisation of the sidestep distance.

Demo 3 will show the target trajectory planning and trajectory control based on the detected objects. The verification results will define the time and precision limits of the trajectory generation as well as the trajectory control performance.

2.3.1 Architecture

2.3.1.1 Vehicle Physical architecture

The physical architecture of the Demo 3 vehicle is consisting of sensors, actuators and elaboration units.

One front radar sensor with $+/-55^{\circ}$ field-of-view and two corner radar sensors with $+/-75^{\circ}$ field-of-view are combined with a mono video sensor with $+/-20.5^{\circ}$ field-of-view to detect moving and stationary objects within and next to the vehicle's path.

The object information of each sensor is sent to a central driver assistance (DA) ECU, where the information of the different sensors is associated and fused.

A car PC and a rapid prototyping ECU are used as elaboration units for the developed Demo 3 algorithms to calculate emergency steering and braking requests that are sent to the braking and steering system.

The vehicle platform is a Bosch test vehicle, specifically used for Demo 3 within SAFE-UP different to the one deployed for Demo 2.

Figure 5: Demo 3 Vehicle physical architecture diagram.

2.3.1.2 Communication Architecture

Demo 3 communication architecture consists of a sensor CAN connecting all sensors with the central driver assistance ECU and a chassis CAN connecting the central driver assistance ECU with the braking and steering system.

For measurement and rapid prototyping purposes, all ECUs are connected to the car PC over Ethernet to enable internal signal access.

Actuation commands are directly sent from the car PC and the rapid prototyping ECU to the braking and steering system over the chassis CAN.

2.3.1.3 Simulation Physical Architecture

The main goal of the simulation environment for Task 3.3 is to verify the integration of the software components. The software components will use the ROS2 (Robot Operating System 2) middleware for communication. The software components will run on the same platform as much as possible. Only the object fusion and tracking algorithm will run on a separate platform and communicate through a bridge with the rest of the system.

Figure 7: Demo 3 Physical layout of the simulation environment.

20

2.3.1.4 Software Architecture

The general layout of Demo 3 software is summarised in Figure 8 below. This figure shows the main functionalities that are needed for the Demo. The arrows between the blocks indicate the information flow. In this figure, the main flow from sensor input to controller output is from left to right.

The sensor input (2) block processes the measurements coming from the vehicle sensors. The influence of weather conditions is calculated by the weather filter (3) which interacts with the sensor input. The object fusion and tracking (4) function provides tracked objects (e.g. VRUs) to the other functions that need this information. The VRU intent & trajectory prediction (6) predicts the intent and trajectory of VRUs.

The path planner (9) plans a path based on the predicted VRU trajectories and a global route, provided by the global planning (8). This global planning needs the current location of the vehicle, provided by the localization (5) module.

The trajectory generator (10) generates trajectories based on the planned path and the predicted VRU trajectories. The trajectories are evaluated on their risk for a collision, which is provided by the crash prediction and avoidance function (7). Finally, the vehicle control (11) generates the outputs to control the vehicle to follow the generated trajectory.

Note that the scenario selection & baseline simulation block (1) is not connected to any other block in Figure 8, as it is a supportive activity to T3.3 in order to define the actual scenarios and not a software module.

Figure 8: Demo 3 Software architecture diagram.

The software environment has two specific use-cases:

• Use in real-life environment, implemented on a distributed network of embedded platforms, interfacing with real sensors and actuators

• Use in a simulated environment, interfacing with simulated sensors and actuators.

2.3.2 Technical Specifications

The technical specifications for Demo 3 are divided in two sections: a) vehicle technical specifications and b) software technical specifications and are presented in the following sub-sections separately. The detailed technical specifications tables are available in *Appendix C* of this document.

2.3.2.1 Vehicle modules

Tables 4-7 below consolidate the Demo 3 vehicle physical modules, actuators, interfaces and elaboration units respectively.

Demo 3 Modules/ Sensors					
ID	Name	Туре	Responsible Partner	Usage in Demo	
M1	Front Radar Sensor	Radar Sensor	Bosch	Object Detection	
M2	Left Corner Radar Sensor	Radar Sensor	Bosch	Object Detection	
М3	<u>Right Corner Radar</u> <u>Sensor</u>	Radar Sensor	Bosch	Object Detection	
M4	Front Video Sensor	Video Sensor	Bosch	Object Detection	

Table 4: Overview of Demo 3 vehicle physical modules.

Table 5: Demo 3 actuators.

	Demo 3 Actuators					
ID	Name	Туре	Responsible Partner	Usage in Demo		
A1	Brake Booster + ESP	Braking System	Bosch	Trajectory Control		
A2	Electronic Power Steering	Steering System	Bosch	Trajectory Control		

Table 6: Demo 3 communication interfaces.

Demo 3 Interfaces			
C	AN		
Working Frequency	N/A	GHz	
Data Rate	500	kbps	
Eth	ernet		
Working Frequency	N/A	GHz	
Data Rate	100	Mbps	
US	B 2.0		
Working Frequency	N/A	GHz	
Data Rate	480	Mbps	
Blueto	both 4.0		
Working Frequency	2.4	GHz	
Data Rate	1 to 3	Mbps	
L	TE		
Working Frequencies	700, 800, 900, 1800, 2600	MHz	
Data Rate	up to 326.4 (down) up to 86.3 (up)	Mbps	
802.11p			
Working Frequency	5.9	GHz	
Data Rate	6	Mbps	

Table 7: Demo 3 elaboration units.

	Elaboration Units					
ID	Name	Туре	Responsible Partner	Usage in Demo		
E1	Front Radar Sensor	Embedded ECU	Bosch	Object Detection		
E2	Right Corner Radar Sensor	Embedded ECU	Bosch	Object Detection		
E3	Left Corner Radar Sensor	Embedded ECU	Bosch	Object Detection		

	Elaboration Units					
ID	Name	Туре	Responsible Partner	Usage in Demo		
E4	Front Video Sensor	Embedded ECU	Bosch	Object Detection		
E5	Central DA ECU	Embedded ECU	Bosch	Object Fusion and Tracking		
E6	ROS PC	Windows based PC	Bosch	All other Demo 3 modules		
E7	Measurement PC	Windows based PC	Bosch	Parameter and Measurement Control of all embedded ECUs		
E8	Rapid Prototyping ECU	Vector/ dSpace ECU	Bosch	open		

2.3.2.2 Software modules

The specifications of the Demo 3 software modules are presented in the following Tables (Table 8 and Table 9). Module 1 (M1) of the software architecture diagram (see Figure 8) is not applicable to technical specifications (it is rather an input dataset), and therefore is not considered in the specification tables that follow.

Table 8: Overview of Demo 3 software modules.

Demo 3 Software Modules/ Sensors					
ID	Name	Туре	Responsible Partner	Usage in Demo	
M2	<u>Sensor Input</u>	Physical environment interaction with sensing equipment	Bosch & Audi	Object Detection	
МЗ	Weather Filter	Real-time simulation of good and bad weather conditions	THI	Object Detection	
M4	Object Fusion & Tracking	Sensor fusion	Bosch	Data fusion	

Demo 3 Software Modules/ Sensors					
ID	Name	Туре	Responsible Partner	Usage in Demo	
M5	Localisation	RTK GNSS based LDM	TU/e	Positioning	
M6	VRU Intent & Trajectory Prediction	Calculate intent and/or trajectory of detected objects	TU/e	Object intent and prediction data	
M7	Crash Prediction & Avoidance Estimation	Provide feedback on trajectories/ trajectory envelope on the ability to avoid a collision	THI	VRU intent & trajectory prediction	
M8	<u>Global Planning</u>	Provide an optimal route from a starting point to a destination point	TNO & TU/e	Route planning	
M9	Path Planning	plan a path (reference line) from the current vehicle position to a local goal on the global route	TNO	Path planning	
M10	Trajectory Generation	Creating AES trajectory to avoid collisions	BOSCH	Trajectory Generation	
M11	Vehicle Control	Translate trajectory to vehicle inputs	BOSCH	Trajectory Control	

Because we use ROS2 as a middleware, all communication between the software blocks mentioned above is done via ROS2 topics. The table below shows all interfaces between the software modules.

Table 9: Demo 3 software interfaces.

Demo 3 Software Interfaces				
From function	To function	Type of information		
2. Sensor input	4. Object Fusion & Tracking	Object data + host data		
3. Weather Filter	2. Sensor Input	Effect of simulated weather on sensor object data		
4. Object Fusion & Tracking	6. VRU Intent & Trajectory Prediction	Object data + host data		
4. Object Fusion & Tracking	9. Path Planning	Object data + host data		
4. Object Fusion & Tracking	10. Trajectory Generation	Object data + host data		
6. VRU Intent & Trajectory Prediction	7. Crash Prediction & Avoidance Estimation	Object intent and object trajectory prediction		
6. VRU Intent & Trajectory Prediction	9. Path Planning	Object intent and object trajectory prediction		
6. VRU Intent & Trajectory Prediction	10. Trajectory Generation	Object intent and object trajectory prediction		
5. Localization	8. Global Planning	Host data		
8. Global Planning	9. Path Planning	Semantic map data		
9. Path Planning	10. Trajectory Generation	Path data		
10. Trajectory Generation	9. Path Planning	Path infeasible feedback		
10. Trajectory Generation	11. Vehicle Control	Trajectory data		
2. Sensor input	5. Localization	Object data + host data		
4. Object Fusion & Tracking	5. Localization	Host data		
7. Crash Prediction & Avoidance Estimation	10. Trajectory Generation	Avoidance estimation data		
2. Sensor input	9. Path Planning	Lane marking data		
8. Global Planning	9. Path Planning	global route data		
2. Sensor input	11. Vehicle Control	Vehicle state data		
2. Sensor input	11. Vehicle Control	Driver state data		

26

2.4 Demo 4

Demo 4 develops a VRU safety system based on V2X technology that provides enhanced communication between vehicles, road infrastructure (RSU installed on traffic light) and VRUs (pedestrians and cyclists). The actual target is to provide additional environmental perception to vehicles regarding the presence of VRUs in critical situations, especially in cases where the vehicle sensors reach their limits (i.e. obstructed areas). Connected VRUs are able to directly exchange V2X messages with both the equipped V2X vehicles and the infrastructure RSU, whereas the non-connected VRUs are monitored by the RSU that exchanges direct messages with the equipped V2X vehicles.

Figure 9: SAFE-UP Demo 4 overview.

The system deploys effective on-time warning messages on critical situations to both drivers and connected VRUs. For the drivers, the warning messages are delivered via in-vehicle display and audio elements, whereas for VRUs the warnings are delivered via a customdeveloped C-ITS smart device. The vehicle is equipped with an AEB system based on perception sensors that may be engaged in cases where an immediate emergency stop is required. This AEB system will increase its efficiency in certain scenarios in combination with V2X technology, since perception sensors data and V2X information will feed the AEB system in order to be engaged on-time and to perform a smoother stopping manoeuvre in occlusion situations

2.4.1 Architecture

Demo 4 consists of three main components:

- Vehicle equipped with V2X technology

- Road-side unit: Infrastructure component equipped with sensors that detect traffic participants (vehicles and VRUs), in addition to V2X technology.
- VRU system equipped with V2X technology

The main architecture of Demo 4 is the communication architecture, presented in Figure 10 below. The physical architecture for each of the three main components mentioned above is presented in Figure 11, Figure 12 and Figure 13 respectively.

2.4.1.1 Communication Architecture

Figure 10: Demo 4 Communication architecture diagram.

The diagram above shows the relationship between all Demo 4 entities involved in high level. At the same time, each component's architecture (vehicle, RSU and VRU) are presented below. For this general communications architecture, RSU and VRU systems communicate with the vehicle via V2X. The information from sensors and V2X will be fused and, as a result, a list of targets/objects will be given. These targets are analysed to detect dangerous situations involving VRUs and the vehicle, and design a way to avoid or minimize them. Additional communications between the components are optional but technically feasible, which gives flexibility in case new communications are required.

2.4.1.2 Vehicle Physical Architecture

Figure 11 presents the vehicle physical architecture. The first diagram displays the position of each component on the vehicle, whereas the second diagram presents the interfaces between those components. The vehicle platform is a Toyota test vehicle (Lexus IS), whereas an IDIADA test vehicle will be used during the development phase as well.

The vehicle architecture is composed by the following components:

- Radar: Sensor able to detect static and dynamic objects. They usually have between ±15 and ± 60 degrees width and long-range detection.
- LiDAR: Sensor able to give information in 3D (distance, position and height). Range is limited in bad weather conditions like fog, since the measurements are light-based.
- Camera: It has a limited vision and it is very sensible to the conditions (light, fog, etc.)
- Perception Unit: Device able to decode the sensors and V2X data (from the V2X Antenna) and perform a data fusion to extract the detected objects list.

- V2X Driving Function Unit: This component takes the output of the Perception Unit to analyse the situation between the ego vehicle position (from GNSS Antenna) and dynamics (from CAN bus) and the detected objects.
- AEB ECU: Admits control orders to make the device react as desired to avoid or minimize a dangerous situation.
- HMI Car PC: Computer able to build HMI messages to be shown to the drivers via the Display
- Display: Screen where alerts and information are shown to the driver.
- GNSS Antenna: Antenna used to position the vehicle.
- V2X Antenna: Antenna used to receive and send V2X data.

2.4.1.3 RSU Physical Architecture

Figure 12: Demo 4 RSU physical architecture diagram.

The RSU architecture is very similar to the vehicle architecture. The main difference is that received V2X data is not processed and used for perception. Therefore, the sensors data (LiDAR and Camera) are fused in the Perception Unit, which generates a list of detected objects that are passed to the RSU Control Logic to generate the V2X messaging for alerting about VRU presence to nearby vehicles. Also, GNSS corrections might be sent via V2X to correct and improve VRUs positioning.

2.4.1.4 VRU Physical Architecture

Figure 13 above presents the high level architecture of the VRU system, one of the three main components in Demo 4, the other two being the RSU and the vehicle components respectively. This device will be developed as a prototype for the purposes of Demo 4, in order to be used by the connected VRUs (pedestrians and cyclists) and exchange direct C-ITS G5 messages with the vehicle and the RSU, as well as provide warnings to the VRUs in critical situations. This prototype development is essential as current market smart phones do not integrate V2X technology.

VRU Core is therefore the host device of all hardware modules and software components that will realize the VRU system. V2X transceiver and multi-mode LTE/3G/2G cellular will implement C-ITS G5 short-range and any necessary long-range communications respectively. The RTK GNSS and IMU hardware modules together with the incoming GNSS corrections (via RTCMEM messages) will provide the necessary high precision device localization. The VRU device will operate as any conventional V2X device and will transmit its own awareness information (CAM messages). Based on the reception of common awareness and notification messages transmitted by the other actors of Demo 4, a Local Dynamic Map will be sustained keeping track of the incoming objects and events in the neighbourhood area. Visual and acoustic interfaces will be used to warn the VRUs (pedestrians and cyclists) via their smart device, whereas haptic warnings will be also explored via Bluetooth connection with a smartwatch haptic interface. Control action strategy is the core software running on the core's host processor. It will be responsible for the main VRU application and the decision for the warning messages to the VRU user.

2.4.2 Technical Specifications

2.4.2.1 Demo 4 Physical modules

Demo 4 modules and sensors are consolidated in Table 10 below. The detailed technical specifications for each of those modules is available in *Appendix D* of this document (can be also assessed directly via hyperlink).

Table 10: Overview of Demo 4 physical modules.

	Demo 4 Modules/ Sensors						
ID	Name	Туре	Responsible Partner	Usage in Demo			
M1	V2X Driving Function Unit	all in one Device for prototyping	IDIADA	Vehicle			
M2	Perception Unit	Combined perception module with data received by the vehicle, RSU and VRU core	IDIADA	Vehicle			
МЗ	Camera Vehicle	CMOS camera for VRU detection	IDIADA	Vehicle			
M4	LiDAR Vehicle	Vehicle LiDAR sensor	IDIADA	Vehicle			
M5	Radar Vehicle	Vehicle radar sensor	IDIADA	Vehicle			
M6	<u>Camera RSU</u>	CMOS camera for VRU detection	IDIADA	RSU			
M7	LIDAR RSU	RSU LiDAR sensor	IDIADA	RSU			
M8	Radar RSU	RSU radar sensor	IDIADA	RSU			

Demo 4 Modules/ Sensors				
ID	Name	Туре	Responsible Partner	Usage in Demo
M9	VRU Core	VRU device motherboard, CPU core and on-board memory	CERTH/ HIT	VRU_CR
M10	V2X Transceiver	Embedded transceiver for the development of V2X communications	CERTH/ HIT	VRU_CR
M11	Multi-mode LTE/3G/2G cellular	4G LTE/3G/2G multimode module for cellular communications	CERTH/ HIT	VRU_CR
M12	RTK GNSS	High performance positioning engine with RTK technology	CERTH/ HIT	VRU_CR
M13	IMU	Triaxial accelerometer, gyroscope and geomagnetic sensor with embedded fusion software	CERTH/ HIT	VRU_CR

2.4.2.2 Demo 4 HMI Modules

In Demo 4, warnings may be provided both to the driver and the connected pedestrians/ cyclists depending on the scenario in focus. In order to deliver the warning messages, HMI modules are deployed for the vehicle (display and audio), as well as on the VRU smart device (visual and auditory). Table 11 below summarises the relevant HMI modules.

Table 11: Demo 4 HMI modules.

Demo 4 HMI modules					
ID	Name	Туре	Responsible Partner	Usage in Demo	
HMI1	HMI Car PC visual & audio	In-vehicle Display & car speakers	IDIADA	Driver warning	
HMI2	VRU Visual interface	Display MIPI, 1280x720 resolution, 16M colours	CERTH / HIT	VRU warnings	
НМІЗ	VRU input interface	Touch Screen multipoint capacity	CERTH / HIT	VRU actions	

HMI4	VRU audio interface	Low power stereo codec audio for headset	CERTH / HIT	VRU warnings
------	---------------------	--	-------------	-----------------

2.4.2.3 Demo 4 Interfaces

Demo 4 communication interfaces are presented in Table 12 below. Main communication interface is the V2X 802.11p communication, whereas supporting communications encompass LTE, Ethernet, USB and Bluetooth SotA technologies.

Table	12:	Demo 4	communication	interfaces.

Demo 4 Interfaces						
LTE (Cat 4)						
Working Frequencies	800, 850, 900, 1800, 2100, 2600	MHz				
Data Rate	up to 150 (DL) up to 50 (UL)	Mbps				
802.11p						
Working Frequency	5.9	GHz				
Data Rate	6	Mbps				
CAN						
Working Frequency	N/A	GHz				
Data Rate	500	kbps				
	Ethernet					
Working Frequency	N/A	GHz				
Data Rate	100	Mbps				
USB 2.0						
Working Frequency	N/A	GHz				
Data Rate	480	Mbps				
Bluetooth 4.0						
Working Frequency	2.4	GHz				
Data Rate	1 to 3	Mbps				

3. A-priori Risk Assessment

The lifecycle of a system/service is depicted in the following scheme. There are 6 main phases for an innovation that is developed within the framework of a research projects, while there are two more when dealing with a marketable product.

Figure 14: Product development lifecycle.

In principle, every new technological achievement might present some form of malfunctions or errors, especially during the initial analysis, design and specification phases. Moreover, in scientifically complex projects involving several institutions in various countries, it is unavoidable that problems occasionally occur. This is even more evident, in cases of highly innovative, high-risk, and complex projects that are characterised by strong interdependence among tasks and deliverables, as is the case of SAFE-UP. However, these problems can be overcome if they are detected at an early stage. It is therefore imperative that an effort be made to identify in advance and assess potential risks, and that the Consortium is prepared for contingency actions, when required. The SAFE-UP system possible malfunctions may be due to the following reasons:

- system or sub-system error or compatibility problems, or design flaws,
- inappropriate use by the users (thus, relating with the HMI),
- organisational barriers and/or
- legal restrictions

For the first case, the SAFE-UP demos developers need to put more effort and fix the possible problems, while for the second one, the users personal limits is the main concern,

and an – as much as possible – easy-to-use system/service has to be developed. The third one refers to the structure of the involved companies or stakeholders and how it is affected, while the last case requires system adaptation to local, national or international law or standardisation activities.

Risks can be avoided, transferred, mitigated, or else accepted. The results of the Risk analysis must be comparable and mainly must be presented in an understandable and comprehensive format. Such an analysis involves various factors of each safety-security issue: severity, occurrence probability, detectability and recoverability, not only for technical risks, but also for behavioural, legal and organizational related risks. Summarising, the four risks categories are explained as follows:

- **Technical and interoperability** dealing with the system or its sub-elements/ modules (hardware and software) functionalities, their (future) technological limitations and possible failures or complications (interoperability issues) with other components; these are related to the technical maturity of the solution.
- **Behavioural** related to HMI and human error, i.e. the user's behaviour, regarding their interaction with the system, concentrating on the possible unexpected /erroneous actions.
- **Legal** in relation to the possible legislative compliance or conflicts in various EU countries where the system is planned to be introduced.
- **Organisational/operational** risks involved within the organization structure of the involved actors and stakeholders companies of the SAFE-UP ecosystem or the road automation sector, their current procedures, shift of work times, etc.

Although the risks categories are clear, many of these risks are intricately and inherently interrelated to one another.

In SAFE-UP, the risks analysis work will take place in two phases:

- Phase 1: estimation of a *priori/foreseen risks*, along with mitigation/alternative solutions.
- Phase 2: *a posteriori risks* analysis, in order to identify *actual* & *unforeseen risks* that occurred after the project developments and examine the compensation solutions that were applied.

It has to be noted that risks related to the project execution (e.g. partners problems, delays, payments, etc.) are not part of WP3 and thus of the current deliverable; such risks are handled within the project management WP.

3.1 Methodology

A risk analysis must follow an effective and clear stepwise procedure in order to be successful. Within the WP3 of the SAFE-UP project, we will follow the Failure Modes, Effects and Criticality Analysis (FMEA / FMECA), in order to identify the potential system risks and also propose adequate mitigation solutions. More specifically, the extended FMEA methodology has been applied here, developed within the ADVISORS project (Bekiaris & Stevens 2005), which is based on FMEA, but includes the indicators of *hazard consequence severity, occurrence probability, detectability* and *recoverability*, and extends the typical FMEA methodology by covering not only technical risks, as done in FMEA, but also behavioural, legal and organisational – related risks.

The Failure Mode and Effects Analysis (FMEA) is a methodology designed to:

- Identify potential failure modes for a product service or process.
- Assess the risk associated with those failure modes and prioritize issues for corrective actions.
- Identify and carry out corrective actions to address the most serious concerns.

There are many ways that FMEAs help with Risk Management (<u>https://fmea-training.com</u>):

- 1. They start by providing a framework to develop a comprehensive identification of potential risks.
- 2. They assist with evaluation of those risks in terms of how severe they could be, their likelihood of occurring and the chance the potential failure has to be detected before failure.
- 3. They are a tool to decide which risks are the most serious.
- 4. They help point to ways to reduce the most serious risks.
- 5. They enable re-evaluation to determine if the risk has been sufficiently reduced or if more work needs to be done.

The FMEA or FMECA procedure is a flexible tool that has been adapted for different purposes, covering the design and development phases for products, services and processes, resulting in higher reliability, better quality, increased safety, enhanced customer satisfaction and reduced costs. An FMEA or FMECA is often required to comply with safety and quality requirements, such as ISO 9001, QS 9000, ISO/TS 16949, Six Sigma, FDA Good Manufacturing Practices (GMPs), Process Safety Management Act (PSM), etc. The overall process proposed by the extended FMEA methodology is summarised in Figure 15 below. As mentioned earlier, it includes different types of risks (technical, behavioural, legal and organizational/ operational); some of these risks may be interrelated, meaning that one can affect or even produce the other. As it is depicted below, FMEA is only the first part of the process which deals with technical and interoperability related risks, while the rest of the boxes are part of the extended FMEA methodology.

Figure 15: Risk analysis process.

The Risk number (for each risk) is calculated using the following equation:

$$RN = S \times O \times \frac{D+R}{2} \tag{1}$$

Where:

S=Severity

O=Occurrence probability

D=Detectabilty

R=Recoverability

Each of the above factors is measured based on the tables below. The table explain the levels of severity, occurrence, detectability and recoverability for each type of risk.

Table 13: Severity level analysis.

Level of severity	Technical issue	Behavioural issue	Legal issues	Organizational issues
9-10 (extremely severe)	The failure could put user safety at risk.	The user error in operating the system could lead to an incident worseness (i.e. safety effects).	Are there laws in each country that do not allow the system to be implemented?	Wide and different organizational framework is needed, that is completely missing (i.e. new services).

Level of severity	Technical issue	Behavioural issue	Legal issues	Organizational issues
7-8 (severe)	The failure implies the total loss of the system functions, resulting in user's dissatisfaction.	User behavioural error may abort the system benefits (i.e. safety effects due to changes in ways of acquiring info).	New laws are required for system implementation and no relevant work has been performed yet.	Organizational framework adaptation is needed (some initial actions have been taken on this domain).
5-6 (slightly severe)	The failure implies the partial loss of the system function, resulting in user's dissatisfaction.	User's behavioural changes may significantly reduce the positive effects of the system.	New laws are required for system implementation and work required has already been performed.	Organizational framework adaptation is needed which has already started being realized.
3-4 (significant)	The failure implies slight dissatisfaction to the user.	User's behavioural changes may somehow influence the positive effects of the system.	New laws are required for system implementation but consensus on them exist.	There is a need for limited and easily realized organizational changes.
1-2 (insignificant)	The failure does not imply perceptible effects to the system function and to the user's satisfaction.	User's behaviour is not expected to reduce the system benefits significantly, or may even further enhance them.	No new laws are required for implementation.	There is no need at all for organizational changes.

Table 14: Occurrence level analysis.

Occurrence	Technical	Behavioural	Legal issues	Organisational
level	issue	issue		issue
9-10 (high)	It is certain that some failures will sometimes occur.	It is certain that some behavioural effects will occur (by the system users).	It is certain that some legal problems will occur.	It is certain that there will be a need for organizational restructuring.

Occurrence level	Technical issue	Behavioural issue	Legal issues	Organisational issue
6-8 (medium)	A failure could occasionally occur.	Some behavioural effects could occasionally occur.	Some legal problems could occasionally occur.	A need for organizational restructuring could occasionally occur (depending on the needs of the service that will arise after the operation of the system).
3-5 (slight)	There is only a slight probability that an error/failure will occur.	There is only a slight probability that some behavioural effects will occur.	There is only a slight probability that some legal problems will occur.	There is only a slight probability that a need for organizational restructuring will occur.
1-2 (improbable)	It is unlikely that a fault will occur.	It is unlikely that some behavioural effects will occur.	It is unlikely that some legal problems will occur.	It is unlikely that a need for organizational restructuring will occur.

Table 15: Detectability level analysis.

Detectability level	Technical issue	Behavioural issue	Legal issue	Organisational issue
9-10 (improbable)	It is impossible or improbable that a problematic area will be detected.	It is impossible or improbable that a user's behavioural effect will be detected.	It is impossible or improbable that a legal problem will be detected.	It is impossible or improbable that an organizational problem will be detected.
7-8 (slight)	The problematic area is detected only in particular cases.	The user's behavioural effect is detected only in particular cases.	The legal problem is detected only in particular cases.	The organizational problem is detected only in particular cases.
5-6 (moderate)	It is probable that the problem will be	It is probable that the user's behavioural	It is probable that the legal	It is probable that the organizational

Detectability level	Technical issue	Behavioural issue	Legal issue	Organisational issue
	detected (depending on the situation).	effect will be detected.	problem will be detected.	problem will be detected.
3-4 (high)	It is very probable that a problem will be detected.	It is very probable that the user's behavioural effect will be detected.	It is very probable that the legal problem will be detected.	It is very probable that the organizational problem will be detected.
1-2 (very high)	It is certain that a problem will be detected.	It is certain that the user's behavioural effect will be detected.	It is certain that the legal problem will be detected.	It is certain that the organizational problem will be detected.

Table 16: Recoverability level analysis.

Recoverability level	Technical issue	Behavioural issue	Legal issues	Organisational issues
9-10 (null)	No recovery action is provided.	System is inflexible to user's behavioural effects.	System is either accepted or rejected by the legal framework.	System requires a fixed organizational environment to operate.
6-8 (low)	The user is only advised on the failure.	Behavioural effects are taken into account by the system.	System may be slightly adapted to meet legal restrictions.	System requires a fixed organizational framework with limited adaptations.
3-5 (high)	Effective recovery action is provided.	System customization might compensate for user's behavioural effects.	System encompasses different versions to meet particular legal demands.	System may operate within various organizational frameworks.
1-2 (full recoverability)	The failure effect is completely avoided by the	System does not allow user's behavioural effects.	System is easily reconfigurable	System does not require organizational changes.

Recoverability	Technical	Behavioural	Legal issues	Organisational
level	issue	issue		issues
	recovery action.		to meet legal demands.	

3.1.1 **Risks severity and mitigation possibility**

The total risk that will be calculated has been matched to five levels of severity (and then added in the 'Problem severity' column of the above table), as follows:

Overall risk factor	Overall severity
512-1000	I- Extremely severe
216-512	II- Severe
64-216	III - Moderate
8-64	IV - Slight
1-8	V - Insignificant

Table 17: Correlation of the Risk Number with the overall risk Severity level.

Then, according to the severity level, the mitigation possibility can be defined as follows. This indicates the possibility of a successful corrective strategy (over a 10 year horizon).

Table 18: S	everity and	mitigation	possibility	scales.
10010 10.0	eventy una	muguuon	possibility	. Jourco.

Risk/issue severity	Mitigation possibility
Extremely severe	
Severe	High
Moderate	Medium
Slight	Low
Insignificant	Improbable

Risk reduction is an iterative process involving dependencies between the different issues. In terms of mitigation strategies, a risk can be reduced in a number of generic ways:

- reducing the magnitude (severity) of the consequences of the potential risk;
- reducing the probability occurrence of the risk;
- increasing risk detection speed and probability;

• protecting against the risk - countermeasures to compensate for a failure (e.g. backup solutions).

The exact definitions of what is actually meant by the mitigation possibility are given below, according to the different levels of possibility.

Possibility of mitigation (10 year horizon)	Definition
High	A solution is available at relatively little cost.
Medium	An achievable solution may be possible at reasonable cost, or a reasonable solution is available at modest cost.
Low	An expensive solution may be possible, but system benefits may not justify these, and/or a solution needs further investigation or is highly complicated.
Improbable	Solutions are too expensive (likely to remain so) in relation to the reduction of risk(s) and the benefits gained from the functionality of the system, and/or a solution is not available for the (extremely) severe risk that has been identified

Table 19: Failure mitigation possibility levels and their definition

3.1.2 Risks analysis template

In order for the results of the Risk analysis to be comparable and mainly presented in an understandable and comprehensive format, a dedicated excel template was created and distributed to the WP3 partners involved in the development of Demos 2, 3 and 4 that identify potential risks that fall in any of the four risks types explained above. With it, the main risks identified were summarised according to the following common format and assigned to an overall risk rating, based on which the risk severity and mitigation possibility was defined.

Risk type* (select one)	Problem short description *	S*	0*	D*	R*	Risk Number	Risk severity	Relevant Architecture Component	Mitigation strategy*	Mitigation possibility
Technical								•	•	
Behavioural										
□Legal										
□Organis.										
								•	•	

Table 20: Detailed Risk analysis template, including mitigation strategy.

*Mandatory field

3.2 Results

The template presented above was used to gather the risks/problems identified in the initial stage of the project and before the system has been developed and tested. Input has been provided by the partners working on Demos 2, 3 and 4.

Overall, 71 risks have been gathered during the first phase of the risk analysis task, which are divided per Demo and are presented in the following table. As it can be seen, there are few risks that are common for Demos 2 and 3, and thus are presented separately.

Demos	2	3	2&3	4
Severity level			-	
Extremely severe		3		
Severe	1	13	4	6
Moderate	2	2	4	14
Slight				21
Insignificant				1
Total	3	18	8	42

Table 21: Number of potential risks gathered per WP3 Demo and severity level.

The risks gathered are presented below per Demo. For each problem, the calculated risk magnitude is provided, as well as the severity level and the mitigation solution proposed.

Table	22:	Demo	2	potential	risks.
1 GDTO		Donno	-	potoritia	1101(0).

Risk Type	Short Description	Demo	s	ο	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
Fechnical issue	Failure related to test hall (rain and fog)	2	7	4	1	5	84	III - Moderate	[THI Test Hall]	Thoroughly and regularly check the Test Hall's state, especially before measurement campaigns
Organisational issue	Available test hall days insufficient for desired maturity level of system	2	5	5	7	8	187,5	III - Moderate	-	Plan additional optional back- up test days

Risk Type	Short Description	Demo	s	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
Organisational issue	Short term test hall availability	2	5	7	7	8	262,5	ll - Severe	-	- Thoroughly plan all test hall related activities - Plan additional optional back- up test days

Table 23: Demo 3 potential risks.

Risk Type	Short Description	Demo	S	ο	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
Technical issue	No activation of AEB/AES avoidance due to failure or insufficient quality of processing algorithm leads to crash w/ VRU dummy	3	8	10	8	10	720	I - Extremely Severe	Sensor Input, Object Fusion & Tracking, VRU Intent & Trajectory Prediction, Crash Prediction & Avoidance Estimation, Path Planning, Trajectory Generation, Vehicle Control	 Add anomaly detection Define unit tests incl. edge cases for the algorithm Thoroughly test the algorithm using rich data
Technical issue	False positive activation of AEB/AES avoidance manoeuvre due to failure or insufficient quality of target object detection leads to loss of vehicle control	3	10	5	10	10	500	II - Severe	Sensor Input, Object Fusion & Tracking, VRU Intent & Trajectory Prediction, Crash Prediction & Avoidance Estimation	 Add anomaly detection Define unit tests incl. edge cases for the algorithm Thoroughly test the algorithm using rich data add add add measures: emergency shut-off button, limited intervention intensity, only trained drivers
Technical issue	Activation of AEB/AES avoidance	3	8	10	8	10	720	I - Extremely Severe	Sensor Input, Object	- Add anomaly detection - Define unit

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement 861570.

Risk Type	Short Description	Demo	s	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
	manoeuvre w/ failure or insufficient quality of processing algorithm leads to crash w/ VRU dummy								Fusion & Tracking, VRU Intent & Trajectory Prediction, Crash Prediction & Avoidance Estimation, Path Planning, Trajectory Generation, Vehicle Control	tests incl. edge cases for the algorithm - Thoroughly test the algorithm using rich data
Technical issue	Activation of AEB/AES avoidance manoeuvre leads to crash w/ VRU dummy due to driver intervention	3	8	8	10	10	640	l - Extremely Severe	Vehicle Control	Develop HMI measures to motivate the driver to follow the steering intervention: visual/acoustic warning, directional steering recommendati on
Technical issue	Activation of AEB/AES avoidance manoeuvre leads to loss of vehicle control due to driver intervention	3	10	5	10	10	500	II - Severe	Vehicle Control	Add additional measures: emergency shut-off button, limited intervention intensity, only trained drivers
Technical issue	Failure of computing platform (Rapid prototyping ECU), leading to no control inputs to the vehicle	3	9	3	9	9	243	II - Severe	Elaboration Units E1, E5, E6, E8 Front Radar Sensor Central DA ECU ROS PC Rapid Control ECU	 Add redundant hardware to monitor the health of the computing platforms Warn the driver to take over control (for eventual application) Use experienced test drivers (during test phase) Add redundant hardware to

Risk Type	Short Description	Demo	s	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
										take over control (e.g. limp home function or minimal safety fall-back)
Technical issue	Wrong output of object fusion and tracking because of computation error, leading to wrong control inputs	3	8	4	8	7	240	II - Severe	Object fusion and tracking	 Add anomaly detection in the object fusion and tracking algorithm Define unit tests incl. edge cases for the algorithm Thoroughly test the algorithm using rich data
Technical issue	Delayed output of object fusion and tracking , because of high computational load, leading to late reaction	3	8	4	8	9	272	II - Severe	Object fusion and tracking	 Thoroughly test the algorithm using data/ simulation ensure enough computing power is available Continuously monitor the CPU load and warn the driver when the CPU load is too high
Technical issue	Wrong output of VRU intent and trajectory prediction, leading to wrong control inputs	3	8	4	8	7	240	II - Severe	VRU Intent & Trajectory Prediction	 Add anomaly detection Define unit tests incl. edge cases for the algorithm Thoroughly test the algorithm using rich data
Technical issue	Late output of VRU intent and trajectory prediction, leading to late control inputs	3	8	4	8	9	272	II - Severe	VRU Intent & Trajectory Prediction	 Thoroughly test the algorithm using data/simulation Ensure enough computing power is available Continuously monitor the CPU load and

Risk Type	Short Description	Demo	s	ο	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
										warn the driver when the CPU load is too high
Technical issue	Wrong output of Localization algorithm, leading to wrong control inputs	3	8	4	8	7	240	II - Severe	Localization	 Add anomaly detection Define unit tests incl. edge cases for the algorithm Thoroughly test the algorithm using rich data
Technical issue	Late output of Localization algorithm, leading to late control inputs	3	8	4	8	9	272	II - Severe	Localization	 Thoroughly test the algorithm using data/simulation Ensure enough computing power is available Continuously monitor the CPU load and warn the driver when the CPU load is too high
Technical issue	Wrong output of path planning algorithm, leading to wrong control inputs	3	8	4	8	7	240	II - Severe	Path Planning	 Add anomaly detection Define unit tests incl. edge cases for the algorithm Thoroughly test the algorithm using rich data
Technical issue	Late output of path planning algorithm, leading to late control inputs	3	8	4	8	9	272	II - Severe	Path Planning	 Thoroughly test the algorithm using data/simulation Ensure enough computing power is available Continuously monitor the CPU load and warn the driver when the CPU load is too high
Technical issue	Wrong output of trajectory generation algorithm, leading	3	8	4	8	7	240	II - Severe	Trajectory Generation	- Add anomaly detection - Define unit tests incl. edge

Risk Type	Short Description	Demo	S	ο	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
	to wrong control inputs									cases for the algorithm - Thoroughly test the algorithm using rich data
Technical issue	Late output of trajectory generation algorithm, leading to late control inputs	3	8	4	8	9	272	II - Severe	Trajectory Generation	 Thoroughly test the algorithm using data/simulation Ensure enough computing power is available Continuously monitor the CPU load and warn the driver when the CPU load is too high
Behavioural issue	The user may (unconsciously) try to override the steering action by the system	3	8	6	3	3	144	III - Moderate	N.A. (driver)	- Training/ education of the driver - Include haptic feedback in the steering system
Behavioural issue	The user could disable the functionality	3	7	5	1	9	175	III - Moderate	N.A. (driver)	 Education of the driver Accept driver decision

Table 24: Demos 2 & 3 common potential risks

Risk Type	Short Description	Demo	S	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
Technical issue	Sensors (Radar, Lidar and Camera) HW failure	2,3	8	6	1	6	168	III - Moderate	Sensors S1- S8	 Check validity of sensor input by cross- checking with different input sources Warn the driver to take over control (for eventual application) Use experienced test drivers (during test phase) Add redundant

DecomptionDecomptionDecomptionDecomptionDecomptionDecomptionImage: Sensors (Radar, issue2,3771273,5III - ModerateSensor Input, Object- Add anomaly detection in the object fusion and tracking algorithm - Define unit tests incl. edge cases for the	Risk Type	Short Description	Demo	S	0	D	R	Risk number	Risk Severity	Relevant Architect	Mitigation Strategy
Technical issueSensors (Radar, Lidar and Camera) SW/processing failure2,3771273,5III - ModerateSensor Input, Object Fusion & Tracking- Add anomaly detection in the object fusion and tracking algorithm - Define unit tests incl. edge cases for the		Decemption						indinisor	Corony	Compon.	onatogy
Technical issueSensors (Radar, Lidar and Camera) SW/processing failure2,3771273,5III - ModerateSensor Input, Object Fusion & Tracking- Add anomaly detection in the object fusion and tracking algorithm - Define unit tests incl. edge cases for the										•	hardware to
Technical issueSensors (Radar, Lidar and Camera) SW/processing failure2,3771273,5III - ModerateSensor Input, Object Fusion & Tracking algorithm - Define unit tests incl. edge cases for the											take over
SW/processing failure	Technical	Sensors (Radar,	2,3	7	7	1	2	73,5	III -	Sensor	- Add anomaly
failure failure Tracking algorithm - Define unit tests incl. edge cases for the	issue	SW/processing							Moderate	Fusion &	object fusion
algorithm - Define unit tests incl. edge cases for the		failure								Tracking	and tracking
- Define unit tests incl. edge cases for the											algorithm
cases for the											- Define unit
											cases for the
algorithm											algorithm
- I horoughly											- Thoroughly
algorithm using											algorithm using
rich data											rich data
Technical Demo vehicle 2,3 8 4 3 5 128 III - Actuators A1 Thoroughly	Technical	Demo vehicle	2,3	8	4	3	5	128	III -	Actuators A1	Thoroughly
Sensors)	Issue	Sensors)							Moderale	IDemo	check the
vehicle] vehicles' state,		,								vehicle]	vehicles' state,
especially for											especially for
sarety critical components											safety critical
(steering &											(steering &
braking											braking
actuators,											actuators,
seat belts,)											seat belts,)
Technical Dummy failure 2,3 7 8 1 3 112 III - [Dummy] Thoroughly	Technical	Dummy failure	2,3	7	8	1	3	112	III -	[Dummy]	Thoroughly
ISSUE Moderate and regularly check the	issue								Moderate		and regularly
Dummy											Dummy
system's state,											system's state,
especially											especially
measurement											measurement
campaigns				_	_		_				campaigns
Organisatio Short term demo 2,3 6 6 7 8 270 II - Severe Thoroughly plan all demo	Organisatio	Short term demo	2,3	6	6	7	8	270	II - Severe	-	- Thoroughly
vehicle availability vehicle related	110113506										vehicle related
activities											activities
- Plan											- Plan
additional additional back-											optional back-
up test days											up test days
Organisatio Available demo 2,3 6 5 7 8 225 II - Severe Thoroughly	Organisatio	Available demo	2,3	6	5	7	8	225	II - Severe	-	- Thoroughly
insufficient for vehicle related	naiissue	insufficient for									vehicle related
desired maturity activities		desired maturity									activities
level of system - Plan		level of system									- Plan
additional											additional
up test davs											up test days
Organisatio Planned test days 2,3 6 5 7 8 225 II - Severe - Thoroughly	Organisatio	Planned test days	2,3	6	5	7	8	225	II - Severe	-	- Thoroughly
nal issue insufficient for plan all test	nal issue	insufficient for									plan all test
level of system / level of sys		level of system /									- Plan

Risk Type	Short Description	Demo	S	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
	overestimation of development progress									additional optional back- up test days
Organisatio nal issue	Insufficient technological advancement between first and second delivery date of demo	2,3	6	6	4	9	234	II - Severe	-	- Clear definition of demo ambitions per delivery - Thoroughly plan algorithm development - Change Demo ambition in time if initial goals can't be met

Table 25: Demo 4 potential risks

Risk Type	Short Description	Demo	s	ο	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
Technical issue	Battery depletion of VRU device	4	8	5	1	2	60	IV - Slight	VRU Core	Available replacement battery on site
Technical issue	Short V2X range coverage due to "improper" device holding / placement leading to inadequate communication	4	6	3	5	2	63	IV - Slight	VRU V2X transceiver	User briefing for proper device holding (i.e. pedestrian VRU) during tests. Installation with bicycle device holder in case of cyclist VRU, or use of external antennas
Technical issue	Wrong heading estimation by the VRU device due to improper use of the smart device by the pedestrian	4	8	7	5	7	336	II - Severe	VRU IMU and Localization	User (pedestrian) briefing for proper device usage during the testing phase.
Technical issue	Poor GNSS coverage area	4	8	3	2	10	144	III - Moderate	Full Demo 4	Different site location selection
Technical issue	Delayed and/or wrong risk algorithm calculations leading to	4	8	5	8	7	300	II - Severe	VRU Control Action Strategy	Thorough tests of the algorithms and optimization of the

Risk Type	Short Description	Demo	s	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
	inefficient user warnings									implemented solutions
Technical issue	Contradictory localization information from different sources (GNSS, CPMs by RSU and vehicle), (related to VRU GNSS, GNSS Corrections, Collected Neighbour/ Object Events, Localization and LDM)	4	5	5	3	6	112,5	III - Moderate	VRU GNSS, GNSS Corrections, Collected Neighbour/O bject Events, Localization and LDM	Extensive VRU GNSS localization performance evaluation with experiments under various conditions
Technical issue	Reported GPS information is below certain quality/ accuracy threshold	4	9	7	2	2	126	III - Moderate	Vehicle (V2X Driving function unit)	GPS quality filters will be applied to give less weight or discard the sample in case the GPS data is not accurate enough.
Technical issue	Communication adds too much delay for a timely reaction.	4	9	6	3	2	135	III - Moderate	Vehicle (V2X Driving function unit)	V2X data has lower weight than perception data, which will make the AEB system to rely only on perception sensors.
Technical issue	High system load leads to delayed car reaction	4	9	5	3	2	112,5	III - Moderate	Vehicle (V2X Driving function unit)	Weighting (e.g. based on target distance) will be applied to relax the computational demand. CPU/load monitoring will also be applied.
Technical issue / Legal issue	Unauthorized station transmits data	4	10	4	9	1	200	III - Moderate	Vehicle (V2X Driving function unit)	Public Key Infrastructure (PKI) and/or other security/authen tication and authorization mechanisms will be applied

51

Risk Type	Short Description	Demo	s	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
Technical issue	Control commands' transmission fails	4	9	1	1	2	13,5	IV - Slight	Vehicle (V2X Driving function unit)	Add anomaly detection. Periodic communication checks. Warn the driver about this critical situation
Technical issue	Data fusion transmission fails	4	9	1	1	2	13,5	IV - Slight	Vehicle (V2X Driving function unit)	Add anomaly detection. Periodic communication checks. Warn the driver about this critical situation
Technical issue	HMI warning info transmission fails	4	6	1	1	1	6	V - Insignific ant	Vehicle (V2X Driving function unit)	Add anomaly detection. Periodic communication checks.
Technical issue	VRU warning transmission fails	4	7	3	1	1	21	IV - Slight	Vehicle (V2X Driving function unit)	Add anomaly detection. Periodic communication checks. Warn the driver about this critical situation
Technical issue	No target recognition. Perception receives a limited information	4	9	6	1	1	54	IV - Slight	Vehicle and RSU (Camera)	Warning to the driver (e.g. camera temporarily unavailable)
Technical issue	Risk of electric shock or thermal events	4	9	1	1	9	45	IV - Slight	Vehicle and RSU (Camera)	Internal mechanisms can be implemented to prevent the electric overload and switch-off/reset the electric circuit.
Technical issue	Camera may stop working. Perception receives a limited information	4	9	1	1	1	9	IV - Slight	Vehicle and RSU (Camera)	Internal mechanisms can be implemented to prevent the electric overload and switch-off/reset

Risk Type	Short Description	Demo	s	ο	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
										the electric
Technical issue	Loss of target recognition. Perception receives a limited information	4	9	1	1	1	9	IV - Slight	Vehicle and RSU (Camera)	Dedicate user manuals/warni ngs to prevent the incorrect configuration.
Technical issue	Loss of target recognition. Perception receives a limited information	4	9	3	1	1	27	IV - Slight	Vehicle and RSU (Camera)	Shield/block magnetic fields
Technical issue	Due to mechanical stresses, the lenses may break and provide an incorrect image	4	9	5	4	1	112,5	III - Moderate	Vehicle and RSU (Camera)	Visual/acoustic warning to the driver (e.g. camera failure, driver check or go to garage)
Technical issue	Visual effect is the same as the one that can be noticed on TV displays, when a pixel stops working properly and it appears as a black spot on the screen.	4	4	7	4	1	70	III - Moderate	Vehicle and RSU (Camera)	The fault is controllable. No mitigation strategy is necessary
Technical issue	The accuracy of the image is lower. Additional lines will be present in the image	4	6	2	4	1	30	IV - Slight	Vehicle and RSU (Camera)	Visual/acoustic warning to the driver (e.g. camera failure, driver check or go to garage)
Technical issue	The image is "corrupted"	4	6	7	1	1	42	IV - Slight	Vehicle and RSU (Camera)	Visual/acoustic warning to the driver (e.g. camera failure, driver check or go to garage)
Technical issue	The ice might prevent the acquisition of the image	4	8	6	1	1	48	IV - Slight	Vehicle and RSU (Camera)	Warn the driver about the temperature and the possibility of the ice formation and subsequent camera limitation
Technical issue	The camera does not transmit anything	4	9	1	1	1	9	IV - Slight	Vehicle and RSU (Camera)	Visual/acoustic warning to the driver (e.g.

Risk Type	Short Description	Demo	s	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
	or transmit the last image acquired									camera unavailability, go to garage)
Technical issue	The camera transmit the image with delay	4	9	1	1	1	9	IV - Slight	Vehicle and RSU (Camera)	Visual/acoustic warning to the driver (e.g. camera unavailability, go to garage)
Technical issue	The camera transmits an incorrect image. This might lead the perception system to make wrong decisions (e.g. unexpected deceleration of the vehicle or unexpected lateral movement)	4	9	1	5	1	27	IV - Slight	Vehicle and RSU (Camera)	Visual/acoustic warning to the driver (e.g. camera unavailability, go to garage)
Technical issue	The camera might perceive/ recognize an object and command an unexpected deceleration or an unexpected lateral movement	4	9	6	9	1	270	II - Severe	Vehicle and RSU (Camera)	Inform the nearby vehicles to be attentive and to always maintain a safe gap/distance with the ego vehicle
Technical issue	The radar cannot fulfil the object detection and the distance/ velocity estimation due to the unavailability of power supply	4	9	1	1	1	9	IV - Slight	Vehicle (Radar)	Visual/acoustic warning to the driver (e.g. radar unavailability, go to garage)
Technical issue	The radar cannot fulfil the object detection and the distance/ velocity estimation due to an internal damage (e.g. mechanical stress due to an uneven road)	4	9	5	1	1	45	IV - Slight	Vehicle (Radar)	Visual/acoustic warning to the driver (e.g. radar unavailability, go to garage)
Technical issue	The radar cannot fulfil the object detection and the distance/ velocity estimation due to	4	9	2	5	1	54	IV - Slight	Vehicle (Radar)	Visual/acoustic warning to the driver (e.g. radar unavailability, go to garage)

Risk Type	Short Description	Demo	s	ο	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
	an interference (e.g. noise)									
Technical issue	The Lidar cannot perceive/ recognize pedestrians or vehicles. A loss of deceleration might occur	4	9	2	1	1	18	IV - Slight	Vehicle and RSU (Lidar)	Visual/acoustic warning to the driver (e.g. Lidar unavailability/ malfunction, go to garage)
Technical issue	Loss of deceleration due to a wrong computed distance	4	9	1	5	1	27	IV - Slight	Vehicle and RSU (Lidar)	Simply remind the driver, at the beginning of each trip, about its responsibility to always be attentive and take control in case he thinks the gap with the forward road user/stationary objects is not sufficient
Technical issue	Missing signals of the vehicle required for the proper execution of the test	4	9	5	3	5	180	III - Moderate	Vehicle (Toyota Safety Sense)	Signals require to do the test should be defined in advance
Technical issue	Damage of the vehicle during the preparation, test set up or execution of the test	4	6	9	6	3	243	II - Severe	Vehicle	Preparation of a manual of instructions for handling and ensure a safe test environment.
Technical issue	Compatibility related to the integration of the systems into the vehicle	4	10	3	3	2	75	III - Moderate	Vehicle (Toyota Safety Sense)	Properly define and execute an extra check to verify integration compatibility within the systems.
Technical issue	Signals from the TSS cannot be collected	4	7	5	4	2	105	III - Moderate	Vehicle (Toyota Safety Sense)	Define require signals before the execution of the test
Behavioural issue	Poor user perception of the HMI warnings, both visual and acoustic, due to "improper" device holding / placement,	4	7	5	1	5	105	III - Moderate	VRU audio and visual interface	Instructions for proper device holding by pedestrian VRUs during tests. Thorough planning of the

55

Risk Type	Short Description	Demo	s	0	D	R	Risk number	Risk Severity	Relevant Architect. Compon.	Mitigation Strategy
	leading to inefficient or non-existent reaction (related to VRU audio and visual interface)									device installation (with a holder at the most suitable place regarding human perception of warnings) in case of bicycle
Behavioural issue	VRU creating an intentional inappropriate interaction with the vehicle (i.e. jumping in front of it) in order to check the overall system's performance but in a dangerous way (related to full Demo 4)	4	9	4	1	9	180	III - Moderate	Full Demo 4	Instructions for normal user behaviour during tests, stressing out the safety issues involved with such inappropriate actions
Organisational issue	Vehicle's schedule is not available for the initial required time	4	9	6	4	5	243	II - Severe	Vehicle	Define schedule based on vehicle availability which has to be confirmed
Organisational issue	Additional time for vehicle preparation for the test	4	7	9	3	7	315	II - Severe	Vehicle	Close monitoring to ensure and guarantee the schedule via regular meetings

4. Discussion & Conclusions

The initial *technical specifications* identified the design of the main architecture diagrams relevant for each Demo; as presented, each Demo has its own specificities in terms of physical and software components, as well as the time-to-development, those specifications were captured on.

For each of the key modules of each Demo, the preliminary technical specifications are defined and presented. Since the development phase has either just started (i.e. Demo 4) or is still in process (Demo 2 and Demo 3), the final information will be provided after the development is finalised and delivered in Month 26 as it is defined within T3.1 description.

The relevant work performed is of essential internal use for WP3 developers, in order to monitor their work on technical level, until the final testing of the system in T3.6 on verification level and beyond in T5.3 on safety impact assessment level.

With regard to the *a-priori risk assessment,* a concrete methodology was deployed to capture the potential risks for each of the targeted WP3 Demo systems. This preliminary assessment supports the early identification of vulnerabilities, in order to efficiently manage them by incorporating them into the design and development phase. They will have a direct or indirect effect on the SAFE-UP system smooth operation and functionality.

As it was expected, the majority of the identified risks are of technical nature, while there are also a few behavioural, legal and organisational risks. This is normal due to the nature of the project and the specific Demos of WP3 that are technologically oriented. Most of the identified risks have a severity level 'severe', 'moderate' or 'slight'. All risks and especially those with higher severity level will be closely monitored during the next project steps.

Currently, 71 risks have been identified, most of which refer to Demo 4, i.e. 42 risks. Next, 18 risks are for Demo 3, while there are 8 additional risks that are common for Demos 2 and 3; finally, 3 risks relate to Demo 2. The reason behind Demo 4 having identified more risks is that its architecture is more complex (system of systems), whereas the V2X technology is not as mature as it is the case for Demo 2 and Demo 3 technologies.

Following the initially detected risks, the risks that will be actually met and the way they will be dealt with (either during the development or during the tests), as well as actual, unpredicted flaws that will occur will be presented in Month 26, thus performing a Phase 2 Risk analysis. The same methodology will be used, along with a similar template that will be provided in due time.

References

Bekiaris, E., Stevens, A. (2005), "Common risk assessment methodology for advanced driver assistance systems", Transport Reviews, Vol. 25, No. 3, p. 283-292, May 2005.

Appendix A: Technical specifications template

Architecture

Add the system architecture diagrams and a short description for each of them:

- Physical
- Communication
- Software

Demo module specifications (to be completed per architecture component)

Module Name			
Module ID			
Manufacturer			
Responsible Partner			
General Description			
Micro			
Memory			
Battery			
Supported OS			
I/O Ports			
Communication network details			
Communication network details	Definition	Value	Unit
Communication network details	Definition Resolution	Value	Unit
Communication network details	Definition Resolution Refresh rate	Value	Unit
Communication network details Module Performances	Definition Resolution Refresh rate 	Value	Unit
Communication network details Module Performances	Definition Resolution Refresh rate 	Value	Unit
Communication network details Module Performances	Definition Resolution Refresh rate 	Value	Unit
Communication network details Module Performances	Definition Resolution Refresh rate 	Value	Unit

59

	Dimensions	mm
	Weight	g
	Operating Temperature Range	°C
	Temperature Gradient	°C/min
	Max humidity @40 °C	% r.h.
	Supply Voltage	V
	Peak Voltage	V
	Supply Current	A
	Battery (Type /Ah)	Ah
	Functional Safety	
	Environment	
Environmental Specifications	Vibration, Shock, Bump	
	EMI/EMC	
	Load Dump	
Note	· · · · · ·	

Sensors consolidated specifications

	Sensors										
ID	Name	Туре	Responsible Partner	Usage in Demo							
S1											
S2											
S3											
S4											
S5											

HMI Modules

	HMI modules										
ID	Name	Туре	Responsible Partner	Usage in Demo							
HMI1											
HMI2											
HMI3											
HMI4											
HMI5											

Demo Interfaces

Demo Interfaces		
	CAN	
Working Frequency	N/A	GHz
Data Rate	500	kbps
Ei	hernet	
Working Frequency	N/A	GHz
Data Rate	100	Mbps
U	SB 2.0	
Working Frequency	N/A	GHz
Data Rate	480	Mbps
Blue	tooth 4.0	
Working Frequency	2.4	GHz
Data Rate	1 to 3	Mbps
	LTE	
Working Frequencies	700, 800, 900, 1800, 2600	MHz
Data Rate	up to 326.4 (down) up to 86.3 (up)	Mbps
802.11p		

Working Frequency	5.9	GHz
Data Rate	6	Mbps

Interface components

	Interface Components				
ID	Name	Туре	Responsible Partner	Used in Demo	
IM1					
IM2					
IM3					
IM4					
IM5					

Elaboration Units

	Elaboration Units			
ID	Name	Туре	Responsible Partner	Used in Demo
E1				
E2				
E3				
E4				
E5				

Appendix B: Demo 2 Detailed Technical Specifications

B1. Vehicle Radar sensors

Module Name	Front, Rear, Left F	Front, Rear, Left Front, Right Front, Left Rear, Right Rear Radar Sensor		
Module ID	S	S1, S2, S3, S4, S5, S6	6	
Manufacturer		internal development		
Responsible Partner	Bosch			
General Description	Radar Sensors mounted at the vehicle front, front corners, rear, and rear corners			
Micro		-		
Memory	-			
Battery	-			
Supported OS	-			
I/O Ports	1Gbps Ethernet			
Communication network details		PTP triggered		
	Definition	Value	Unit	
	Detection range (radial)	100	m	
Module	Separability (radial) 0.2 m			
Performances	Field of view (horizontal)	+/-60	Degree	
	Field of view (vertical)	+/-15	Degree	
	Separability (horizontal)	-	Degree	

	Radial velocity	+/-30	kph
	Separability (radial velocity)	0.1	m/s
	Measurement update cycle	60	ms
	Definition	Value	Unit
	Dimensions	230x130x70	mm³
Physical Module	Weight	3000	g
Specifications	Supply Voltage	12	V
	Peak Voltage	12	V
	Supply Current	5	A
Environmental Specifications			
Note			

B2. Front stereo video sensors

Module Name	Front Stereo Video Sensor
Module ID	S7
Manufacturer	Dream Chip
Responsible Partner	Bosch
General Description	Video Sensor mounted at the vehicle front wind shield
Micro	-
Memory	-
Battery	-
Supported OS	-
I/O Ports	SDI output (2x HD-BNC), Genlock Sync (2x HD-BNC), Control(RS485 / RS422 / UART 3.3V)
Communication network details	

	Definition	Value	Unit
Madula	Resolution	1920 x 1080	рх
	Sensor Type	1 / 1.23	"
Performances	Shutter type	Global	
	Dynamic	12 bit / 72 dB	
	Measurement update cycle	60	ms
	Definition	Value	Unit
Physical Module Specifications	Dimensions	300x300x100	mm ³
	Weight	400	g
	Supply Voltage	6-36	V
	Supply Current	300mA@12V	A
Environmental Specifications			
Note	https://www.dream	chip.de/products/atom	n-one-family/atom-
one.html			

B3. Rooftop Lidar sensor

Module Name	Rooftop Lidar Sensor
Module ID	S8
Manufacturer	Hesai Pandar 64
Responsible Partner	Bosch
General Description	Lidar Sensor mounted at the vehicle's rooftop
Micro	-
Memory	-
Battery	-
Supported OS	-
I/O Ports	100Mbps Ethernet

66

S Λ F Ξ - U P 😂

Appendix C: Demo 3 Detailed Technical Specifications

C1. Front Radar Sensor

Module Name	Front Radar Se	Front Radar Sensor	
Module ID	S1		
Manufacturer	Bosch		
Responsible Partner	Bosch		
General Description	Radar Sensor mounted at t	he vehic	le front
Micro	?		
Memory	-		
Battery	-		
Supported OS	Bosch internal		
I/O Ports	CAN, Ethernet		
Communication network details	CAN, XCP over Ethernet		
	Definition	Value	Unit
	Detection range (radial)	300	m
	Detection range (radial) Separability (radial)	300 0.4- 0.8	m m
	Detection range (radial) Separability (radial) Field of view (horizontal)	300 0.4- 0.8 ± 55	m m Degree
Module Performances	Detection range (radial) Separability (radial) Field of view (horizontal) Separability (horizontal)	300 0.4- 0.8 ± 55 1	m m Degree Degree
Module Performances	Detection range (radial) Separability (radial) Field of view (horizontal) Separability (horizontal) Radial velocity	300 0.4- 0.8 ± 55 1 -110 - +50	m m Degree Degree m/s
Module Performances	Detection range (radial) Separability (radial) Field of view (horizontal) Separability (horizontal) Radial velocity Separability (radial velocity)	300 0.4- 0.8 ± 55 1 -110 - +50 0.2	m m Degree Degree m/s m/s
Module Performances	Detection range (radial) Separability (radial) Field of view (horizontal) Separability (horizontal) Radial velocity Separability (radial velocity) Measurement update cycle	300 0.4- 0.8 ± 55 1 -110 - +50 0.2 66	m Degree Degree m/s m/s ms

	Box volume	143 x 110 x 30	mm³
Note			

C2. Corner Radar Sensor

Module Name	Corner Radar Se	ensor	
Module ID	S2, S3		
Manufacturer	Bosch		
Responsible Partner	Bosch		
General Description	Radar Sensor mounted at corner	the vehic	cle front
Micro	?		
Memory	-		
Battery	-		
Supported OS	Bosch internal		
I/O Ports	CAN, Ethernet		
Communication network details	CAN, XCP over E	thernet	
	Definition	Value	Unit
	Detection range (radial)	120	m
	Separability (radial)	0.4	m
	Field of view (horizontal)	± 75	Degree
Module Performances	Separability (horizontal)	4.5	Degree
	Radial velocity	± 80	m/s
	Separability (radial velocity)	0.2	m/s
	Moasuromont undato		
	cycle	66	ms

	Box volume	143 x 110 x 30	mm³
Note			

C3. Front Video Sensor

Module Name	Front Video Sensor		
Module ID	S4		
Manufacturer	Bosch		
Responsible Partner	Во	sch	
General Description	Video Sensor mounted at	the vehic	le front wind shield
Micro		?	
Memory	-		
Battery	-		
Supported OS	Bosch internal		
I/O Ports	CAN, Ethernet		
Communication network details	CAN, XCP over Ethernet		
	Definition	Value	Unit
	Field of view (far-view, horizontal)	± 20.5	Degree
	Angular resolution (far- view, horizontal)	0.033	Degree/pixel
Module Performances	Field of view (far-view, vertical)	-14.2 - +6.8	Degree
	Angular resolution (far- view, vertical)	0.033	Degree/pixel
	Base resolution (far-view)	1280 x 640	pixel ²
	Field of view (wide-view, horizontal)	± 44.1	Degree

	Angular resolution (wide - view, horizontal)	0.053	Degree/pixel
	Field of view (wide -view, vertical)	-23.7 - +17	Degree
	Angular resolution (wide - view, vertical)	0.063	Degree/pixel
	Base resolution (wide - view)	1664 x 640	pixel ²
Note			

C4. Brake Booster + ESP

Module Name	Brake Booster + ESP
Module ID	A1
Manufacturer	Bosch
Responsible Partner	Bosch
General Description	Integrated power brake booster (IPB 1.0) and ESP 9
Micro	-
Memory	-
Battery	-
Supported OS	Bosch internal
I/O Ports	CAN, Ethernet
Communication network details	CAN, XCP over Ethernet
Note	

C5. Electronic Power Steering

Module Name	Electronic Power Steering	
Module ID	A1	
Manufacturer	Bosch	

Responsible Partner	Bosch
General Description	Electronic power steering unit
Micro	-
Memory	-
Battery	-
Supported OS	Bosch internal
I/O Ports	CAN
Communication network details	CAN
Note	

C6. Sensor Input

Module Name	Sensor Input		
Module ID	M2		
Responsible Partner	Bosch & Audi		
General Description	Physical environment interaction with sensing equipment. Object Data output will be provided by 1 front radar sensor, 2 corner radar sensors, and 1 front camera.		
Interface	For simulation: ROS topics For hardware: interface to physical components, see C1, C2, C3		
Inputs	Inputs		
Source	Name	Description	
<none></none>			
Outputs			
	Name	Description	
	Object Data	Detected objects per sensor	
	Host data	Host data per sensor	
Note(s)			

C7. Weather Filter

Module Name	Weather Filter		
Module ID	МЗ		
Responsible Partner	ТНІ		
General Description	Based on weather settings in the Weather Filter, compute a probability of object detection field, to facilitate real-time simulation of bad weather conditions even in good weather testing.		
Interface	For simulation: ROS topics For hardware: interface to physical components T.B.D.		
Inputs			
Source	Name	Description	
	Rain_level_setting Fog_level_setting	Parameter describing severity of precipitation	
Outputs			
	Name	Description	
	Object data	Detected objects per sensor, adjusted for possibility of detection by weather filter	
Note(s)			

C8. Object Fusion & Tracking

Module Name	Object Fusion & Tracking	
Module ID	M4	
Responsible Partner	Bosch	
General Description	 Fusing multiple sensor inputs into best-estimate object tracks Transforming frame of reference both baselink and odometry frame, as well as fusing size estimations of objects to provide centre of body position estimations. Object Data output will be provided by 1 front radar sensor, 2 corner radar sensors, and 1 front camera. Object Data from all sensor will be fused on object level. 	
Interface	For simulation: ROS topics For hardware: interface to physical components T.B.D.	
Inputs		

Source	Name	Description
	Object data	Detected objects per sensor, adjusted for possibility of detection by weather filter
Outputs		
	Name	Description
	Object data	Fused object track
	Host data	Fused host data
Note(s)		

C9. Localisation

Module Name	Localization		
Module ID	M5		
Responsible Partner	TU/e		
General Description	The localization module uses RTK GNSS or an indoor system to determine the pose of the vehicle w.r.t. a map frame. The map will be used as a look-up reference. The absolute position is determined by absolute/relative motion & position sensors, returning the position in the map. Consequently, the map can be used to get information that is not measured by vehicle fixed sensors. In this way, the lane information can be "measured" from the map, while the vehicle may not be equipped with a lane-detection camera at all.		
Interface	ROS-topics		
Inputs			
Source	Name	Description	
	Host data Localization specific sensors Map feature measurements	Host data per sensor Depends on sensors available (e.g. UWB, GNSS) Lane markings, etc, only if needed	
Outputs			
	Name	Description	
	2D pose	Pose (position + heading) of the ego vehicle w.r.t. a certain (map) coordinate frame	
Note(s)			

C10. VRU Intent & Trajectory Prediction

Module Name	VRU Intent & Trajectory Prediction		
Module ID	M6		
Responsible Partner	TU/e		
General Description	 Calculate intent and/or trajectory of detected objects Provide a likelihood map of future object locations as function of time 		
Interface	ROS-topics		
Inputs			
Source	Name	Description	
Object fusion and tracking	Object data	Current observations on observed objects. Perhaps lower level sensor data might be used as well (to be decided)	
Outputs			
	Name	Description	
	Object intent and prediction data	Data representing a probability representation of the future time-dependent locations of objects	
Note(s)			

C11. Crash Prediction & Avoidance Estimation

Module Name	Crash Prediction & Avoidance Estimation		
Module ID	M7		
Responsible Partner	ТНІ		
General Description	 Provide feedback on trajectories/trajectory envelope on the ability to avoid a collision 		
Interface	ROS-topics		
Inputs			
Source	Name	Description	
VRU intent & trajectory prediction	Object intent and prediction data	Data representing a probability representation of the future time-dependent locations of objects	

Trajectory generation	Trajectory data	Considered trajectories for AES behavior
Outputs		
	Name	Description
	Avoidance_estimation_data	A per trajectory estimation of chance to avoid collision
Note(s)		

C12. Global Planning

Module Name	Global Planning		
Module ID	M8		
Responsible Partner	TNO & TU/e		
General Description	 Provide an optimal route from a starting point to a destination point. Optimality can be defined as shortest route, fastest route, safest route, avoiding congestions, etc 		
Interface	ROS-topics		
Inputs			
Source	Name	Description	
Localization	2D Pose Map	Pose (position + heading) of the ego vehicle w.r.t. a certain (map) coordinate frame Offline map that contains information such as road geometry and semantic information (e.g. lane type)	
Outputs			
	Name	Description	
	Path	Path data based solely on map information,	
Note(s)			

C13. Path Planning

Module Name	3.3.9 Path Planning
Module ID	M9
Responsible Partner	TNO

General Description	• The results of the localization, the perception of the scene in the immediate surroundings of the vehicle and the information from (static) map are used to plan a path (reference line) from the current vehicle position to a local goal on the global route.		
Interface	ROS-topics		
Inputs			
Source	Name	Description	
Global planning	Path	Path data based solely on map information,	
Camera sensor	Line marking data	Observed line markings as polyline, to allow fitting to map	
Outputs			
	Name	Description	
	Path	The reference line (path) that the vehicle should nominally follow	
Note(s)			

C14. Trajectory Generation

Module Name	Trajectory Generation		
Module ID	M10		
Responsible Partner	Bosch		
General Description	 Creating nominal trajectory for reference line following Creating AES trajectory to avoid collisions considering actuator related as well as human factors related dynamical constraints 		
Interface	ROS-topics		
Inputs	nputs		
Source	Name	Description	
Path planning	Path	The reference line (path) that the vehicle should nominally follow	
Object data	Object data	Fused object track	
Object data	Host data	Fused host data	
VRU intent and trajectory prediction	Object intent and prediction data	Data representing a probability representation of the future time- dependent locations of objects	

Crash prediction & avoidance estimation	Avoidance_estimation_data	A per trajectory estimation of chance to avoid collision
Outputs		
	Name	Description
	Trajectory data	Considered trajectories for nominal and AES behavior
Note(s)		

C15. Vehicle control

Module Name	Vehicle Control		
Module ID	M11		
Responsible Partner	Bosch		
General Description	 Translate trajectory to vehicle inputs Ensure that vehicle control is performed in a way that both the AES trajectory is followed and the vehicle remains in a safe state in combination with any additional driver input. 		
Interface	ROS-topics		
Inputs			
Source	Name	Description	
Trajectory generation	Trajectory data	Considered trajectories for nominal and AES behavior	
Outputs			
	Name	Description	
	Vehicle control outputs	Inputs to actuators in vehicle	
Note(s)			

Appendix D: Demo 4 Detailed Technical Specifications

D1. V2X Driving Function Unit

Module Name	V2X Driving Function Unit			
Module ID	Module_1			
Manufacturer	IDIADA			
Responsible Partner	IDIADA			
General Description	All in one Device for prototyping			
Micro	NVIDIA Je	etson TX2		
Memory	2 TB ((TBC)		
Battery	2600mAl	n battery		
Supported OS	Ubuntu	ı 18.04		
I/O Ports	Ethernet / CAN / E	Digital / Analog IO		
Communication network details	DSRC ITS-G5, Bluetooth 4.0			
	Definition	Value	Unit	
Module Performances	TBD			
	TBD			
	TBD			
	Definition	Value	Unit	
	Dimensions	31(W) x 4(H) x 23(D)	cm	
	Weight	1.5	kg	
Dhysical Madula	Operating Temperature Range	-40~+80	°C	
Specifications	Temperature Gradient	N/A	°C/min	
	Max humidity @40 °C	N/A	% r.h.	
	Supply Voltage	9/32	V	
	Peak Voltage	32	V	
	Supply Current	0.5~2.0	A	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement 861570.

	Battery (Type /Ah)	Lithium	Ah
	Functional Safety	N/A	
Environmentel	Environment	N/A	
Specifications	Vibration, Shock, Bump	N/A	
	EMI/EMC	N/A	
	Load Dump	N/A	
Note	Gaps on the table due to is not n project from my	ecessary for specification point of view.	on of the

D2. Perception Unit

Module Name	Perception Unit			
Module ID	Module_2			
Manufacturer	NVIDIA			
Responsible Partner	IDIADA			
General Description	Perception	module		
Micro	NVIDIA Teg	gra family		
Memory	N/A	Ą		
Battery	N/A	Ą		
Supported OS	N/A	ł		
I/O Ports	N/A			
Communication network details	N/A			
	Definition	Value	Unit	
Module Performances	TBD			
	TBD			
	Definition	Value	Unit	
	Dimensions	303x213x84.3	mm	
Physical Module Specifications	Weight	N/A	g	
	Operating Temperature Range	0~45	°C	
	Temperature Gradient	N/A	°C/min	
	Max humidity @40 °C	N/A	% r.h.	

	Supply Voltage	12	V
	Peak Voltage	N/A	V
	Supply Current	N/A	А
	Battery (Type /Ah)	N/A	Ah
	Functional Safety	N/A	
Fruitermentel	Environment	N/A	
Specifications	Vibration, Shock, Bump	N/A	
	EMI/EMC	N/A	
	Load Dump	N/A	
Note	Gaps on the table due to is not necessary for specification of project from my point of view.		on of the

D3. Vehicle Camera

Module Name	Camera Vehicle			
Module ID	Module_4			
Manufacturer		Basler		
Responsible Partner		IDIADA		
General Description	CN	IOS Camera		
Micro		N/A		
Memory		N/A		
Battery		N/A		
Supported OS	N/A			
I/O Ports	N/A			
Communication network details	N/A			
	Definition	Value	Unit	
		1936 x 1216 (full resolution)		
Module Performances	Resolution (H x V)	1920 x 1200 (default	pixel	
		resolution)		
	Frame Rate	51	fps	
	Definition	Value	Unit	

	Dimensions	48.9x29x29	mm
	Weight	<100	g
	Operating Temperature Range	-10~+60	°C
	Temperature Gradient	N/A	°C/min
Physical Module Specifications	Max humidity @40 °C	80	% r.h.
	Supply Voltage	12~24	VDC
	Peak Voltage	N/A	V
	Supply Current	N/A	A
	Battery (Type /Ah)	N/A	Ah
	Functional Safety	N/A	
	Environment N/A		
Environmental Specifications	Vibration, Shock, Bump N/A		
	EMI/EMC N/A		
	Load Dump	N/A	
Note	Gaps on the table due to is not necessary for specifi project from my point of view.		of the

D4. Vehicle LiDAR

Module Name	Lidar module Vehicle
Module ID	Module_5
Manufacturer	Ouster
Responsible Partner	IDIADA
General Description	LiDAR Sensor
Micro	TBD
Memory	N/A
Battery	N/A
Supported OS	N/A
I/O Ports	N/A
Communication network details	N/A

	Definition	Value	Unit
	Range (80% Lambertian	110 m @ >90% detection probability, 100 klx sunlight	m
	Reflectivity)	150 m @ >50% detection probability, 100 klx sunlight	
Module Performances	Range (10% Lambertian	50 m @ >90% detection probability, 100 klx sunlight	m
	Reflectivity)	65 m @ >50% detection probability, 100 klx sunlight	
		0.8 - 1 m: ± 1 cm	
	Precision (10% Lambertian	1 - 20 m: ± 1.1 cm	m
	Reflectivity; 1 standard deviation	20 - 50 m ± 3 cm	
		>50 m: ± 5 cm	
	Definition	Value	Unit
	Dimensions	N/A	mm
	Weight	455	g
	Operating Temperature Range	-40~+55	°C
Physical Module	Temperature Gradient	N/A	°C/min
Specifications	Max humidity @40 °C	N/A	% r.h.
	Supply Voltage	N/A	V
	Peak Voltage	TBD	V
	Supply Current	TBD	A
	Battery (Type /Ah)	TBD	Ah
	Functional Safety	TBD	
	Environment	TBD	
Environmental Specifications	Vibration, Shock, Bump	TBD	
	EMI/EMC	TBD	
	Load Dump	TBD	
Note	Gaps on the table due to is not necessary for specification of the from my point of view.		project

D5. Vehicle Radar

Module Name	Radar Vehicle			
Module ID		Module_5		
Manufacturer		Continental		
Responsible Partner		IDIADA		
General Description		Radar sensor		
Micro		N/A		
Memory		N/A		
Battery		N/A		
Supported OS		N/A		
I/O Ports		N/A		
Communication network details		N/A		
	Definition	Value	Unit	
Module Performances	Range	0.20250 m far range 0.2070m/100m at 0±45° near range 0.2020m at ±60° near range	m	
	Definition	Value	Unit	
	Dimensions	138x91x31	mm	
	Weight	320	g	
	Operating Temperature Range	-40~+85	°C	
Physical Module	Temperature Gradient	N/A	°C/min	
Specifications	Max humidity @40 °C	N/A	% r.h.	
	Supply Voltage	8~32	VDC	
	Peak Voltage	N/A	V	
	Supply Current	0.55	Α	
	Battery (Type /Ah)	N/A	Ah	
	Functional Safety N/A		<u> </u>	
Environmental	Environment	N/A		
Specifications	Vibration, Shock, Bump	N/A		

	EMI/EMC	N/A
	Load Dump	N/A
Note	Gaps on the table	due to is not necessary for specification of the project from my point of view.

D6. RSU Camera

Module Name	C	Camera RSU		
Module ID	Module_4			
Manufacturer		Basler		
Responsible Partner		IDIADA		
General Description	CMOS Camera			
Micro		N/A		
Memory		N/A		
Battery		N/A		
Supported OS		N/A		
I/O Ports		N/A		
Communication network details	N/A			
	Definition	Value	Unit	
	Resolution (H x V)	1936 x 1216 (full resolution) 1920 x 1200 (default resolution)	pixel	
Module Performances	Frame Rate	51	fps	
	Definition	Value	Unit	
Physical Module	Dimensions	48.9x29x29	mm	
Specifications	Weight	<100	g	
	Operating Temperature		°C	

	Temperature Gradient	N/A	°C/min
	Max humidity @40 °C	80	% r.h.
	Supply Voltage	12~24	VDC
	Peak Voltage	N/A	V
	Supply Current	N/A	A
	Battery (Type /Ah)	N/A	Ah
	Functional Safety	N/A	
	Environment	N/A	
Environmental Specifications	Vibration, Shock, Bump	N/A	
	EMI/EMC	N/A	
	Load Dump	N/A	
Note	Gaps on the table due to is project fro	not necessary for specification m my point of view.	of the

D7. RSU LiDAR

Module Name	Lidar module RSU		
Module ID	Module_5		
Manufacturer	Ouster		
Responsible Partner	IC	DIADA	
General Description	LiDA	R Sensor	
Micro		TBD	
Memory		N/A	
Battery	N/A		
Supported OS	N/A		
I/O Ports	N/A		
Communication network details	N/A		
	Definition Value Unit		
Module Performances	Range (80% Lambertian Reflectivity)	110 m @ >90% detection probability, 100 klx sunlight 150 m @ >50% detection probability, 100 klx sunlight	m

D8. RSU Radar

Module Name	Radar RSU
Module ID	Module_5
Manufacturer	Continental

S Λ F Ξ - U P 😂

Responsible Partner	IDIADA				
General Description		Radar sensor			
Micro		N/A			
Memory		N/A			
Battery	N/A				
Supported OS		N/A			
I/O Ports		N/A			
Communication network details		N/A			
	Definition	Value	Unit		
Module		0.20250 m far range			
Performances	Range	0.2070m/100m at 0±45° near range 0.2020m at ±60° near range	m		
	Definition	Value	Unit		
	Dimensions	138x91x31	mm		
	Weight	320	g		
	Operating Temperature Range	-40~+85	°C		
Physical Module	Temperature Gradient	N/A	°C/min		
Specifications	Max humidity @40 °C	N/A	% r.h.		
	Supply Voltage	8~32	VDC		
	Peak Voltage	N/A	V		
	Supply Current	0.55	А		
	Battery (Type /Ah)	N/A	Ah		
En income de la	Functional Safety	N/A			
Environmental Specifications	Environment	N/A			
opecifications	Vibration, Shock, Bump	, N/A			

	EMI/EMC	N/A
	Load Dump	N/A
Note	Gaps on the tab	le due to is not necessary for specification of the project from my point of view.

D9. VRU Core

Module Name	VRU Core		
Module ID	VRU_CR		
Manufacturer	CERTH / HI	Т	
Responsible Partner	CERTH / HIT		
General Description	VRU device motherboard, CPU core and on-board memory		
Micro	NXP i.MX8MI	М	
Memory	2 GB LPDDR4, 16 G	B eMMC	
Battery	2200 mAh LiF	0	
Supported OS	Linux, Androi	d	
I/O Ports	Micro USB, USB-C		
Communication network details	N/A		
	Definition	Value	Unit
Module Performances	Quad core A53		
	CPU Frequency per core	1.6	GHz
	RAM speed	3000	MT/s
	Definition	Value	Unit
	Dimensions	85x145x10	mm
	Weight	200	g
	Operating Temperature Range	0 - +55	°C
Physical Module Specifications	Temperature Gradient	TBD	°C/min
	Max humidity @40 °C	TBD	% r.h.
	Supply Voltage	3.7	V
	Peak Voltage	4.2	V
	Supply Current	0.5	А

	Battery (Type /Ah)	(LiPo / 2.2)	Ah
	Functional Safety	TBD	
	Environment	TBD	
Environmental Specifications	Vibration, Shock, Bump	TBD	
	EMI/EMC	TBD	
	Load Dump	TBD	
Note			

D10. VRU V2X Transceiver

Module Name	V2X Transceiver		V2X Transceiver		
Module ID	VRU_V2X_TXRX				
Manufacturer	u-blox (model VERA	-P1)			
Responsible Partner	CERTH / HIT				
General Description	Embedded transceiver for the development of V2X communications				
Micro	N/A				
Memory	N/A				
Battery	N/A				
Supported OS	N/A				
I/O Ports	USB 2.0, SPI				
Communication network	N/A				
details	N/A				
details	N/A Definition	Value	Unit		
details	N/A Definition Max output power	Value +23	<i>Unit</i> dBm		
details	Definition Max output power Rx sensitivity (in 3 Mbps data rate)	Value +23 -98	Unit dBm dBm		
details Module Performances	N/A Definition Max output power Rx sensitivity (in 3 Mbps data rate) Definition	Value +23 -98 Value	Unit dBm dBm Unit		
details Module Performances	Definition Max output power Rx sensitivity (in 3 Mbps data rate) Definition Dimensions	Value +23 -98 Value 30x25x3.5	Unit dBm dBm Unit mm		
details Module Performances	Definition Max output power Rx sensitivity (in 3 Mbps data rate) Definition Dimensions Weight	Value +23 -98 Value 30x25x3.5 N/A	Unit dBm dBm Unit mm		
details Module Performances	Definition Max output power Rx sensitivity (in 3 Mbps data rate) Definition Dimensions Weight Operating Temperature Range	Value +23 -98 Value 30x25x3.5 N/A -40 - +95	Unit dBm dBm Unit mm g °C		
details Module Performances	Definition Max output power Rx sensitivity (in 3 Mbps data rate) Definition Dimensions Weight Operating Temperature Range Temperature Gradient	Value +23 -98 Value 30x25x3.5 N/A -40 - +95 TBD	Unit dBm dBm Unit mm g °C °C/min		
details Module Performances Physical Module Specifications	Definition Max output power Rx sensitivity (in 3 Mbps data rate) Definition Dimensions Weight Operating Temperature Range Temperature Gradient Max humidity @40 °C	Value +23 -98 Value 30x25x3.5 N/A -40 - +95 TBD TBD	Unit dBm dBm Unit mm g °C °C/min % r.h.		

	Peak Voltage	5	V
	Supply Current	0.4	А
	Battery (Type /Ah)	N/A	Ah
	Functional Safety	TBD	
	Environment	TBD	
	Vibration, Shock, Bump	TBD)
	EMI/EMC	TBD)
Environmental Specifications	Load Dump	TBL)
Note			

D11. VRU LTE communication module

Module Name	Multi-mode LTE/3G/2G cellular		
Module ID	VRU_LTE		
Manufacturer	u-blox (model TOBY-L210)		
Responsible Partner	CERTH / HIT		
General Description	4G LTE/3G/2G multimode module for cellul	ar communication	S
Micro	N/A		
Memory	N/A		
Battery	N/A		
Supported OS	N/A		
I/O Ports	UART, USB 2.0, SDIO, I ² C compatible DDC		
	4G LTE (800/850/900/1800/2100/2600 MHz)		
details	3G (850/900/1900/2100 MHz)		
	2G (850/900/1800/1900 MHz)		
	Definition Value U		
Module Performances	LTE Rx input sensitivity (depending on used channel and bandwidth)	-97 – -109	dBm
	3G Rx input sensitivity performance	-111	dBm
	2G Rx input sensitivity performance	-110	dBm
	Definition	Value	Unit

	Dimensions	35.6x24.8x2.6	mm
	Weight	4.8	g
	Operating Temperature Range	Normal: -20 – +65 Extended: -40 – +85	°C
Physical Module	Temperature Gradient		°C/min
Specifications	Max humidity @40 °C		% r.h.
	Supply Voltage	3.8	V
	Peak Voltage	5	V
	Supply Current	~0.6	А
	Battery (Type /Ah)	N/A	Ah
	Functional Safety	TBD	
En la companya de la	Environment	TBD	
Environmental Specifications	Vibration, Shock, Bump	TBD	
	EMI/EMC	TBD	
	Load Dump	TBD	
Note			

D12. VRU RTK sensor

Module Name	RTK GNSS	
Module ID	VRU_GNSS	
Manufacturer	u-blox (model NEO-M8P)	
Responsible Partner	CERTH / HIT	
General Description	High performance positioning engine with RTK technology	
Micro	N/A	
Memory	N/A	
Battery	N/A	
Supported OS	N/A	
I/O Ports	UART, USB, SPI, I ² C compatible DDC	

Communication network details	N/A		
	Definition	Value	Unit
Module Performances	Horizontal position accuracy (standalone)	2.5	m
	Horizontal position accuracy (RTK)	0.025	m
	Velocity accuracy	0.05	m/s
	Max navigation update rate	4 - 10	Hz
	Time to first fix (cold start)	≤ 30	S
	Time to first fix (hot start)	1	S
	Definition	Value	Unit
	Dimensions	16x12.2x2.4	mm
	Weight	N/A	g
	Operating Temperature Range	-40 - +85	°C
Physical Module	Temperature Gradient		°C/min
Specifications	Max humidity @40 °C		% r.h.
	Supply Voltage	3	V
	Peak Voltage	3.6	V
	Supply Current	~0.035	А
	Battery (Type /Ah)	N/A	Ah
	Functional Safety	TBD	
		Operational	limits:
	Environment	Dynamics ≤ 4g	
Environmental Specifications		Altitude ≤ 50 Km	
		Velocity ≤ 500 m/s	
	Vibration, Shock, Bump	TBD	
	EMI/EMC	TBD	
	Load Dump	TBD	
Note			

D13. VRU IMU sensor

Module Name	IMU			
Module ID	VRU_IMU			
Manufacturer	Bosch (mc	odel BNO055)		
Responsible Partner	CER	TH / HIT		
General Description	Triaxial accelerometer, gyroscope and geomagnetic sensor with embedded fusion software			
Micro	1	N/A		
Memory	1	N/A		
Battery	1	N/A		
Supported OS	1	N/A		
I/O Ports	UAF	RT, I ² C		
Communication network details	N/A			
	Definition	Value	Unit	
	Acceleration ranges	±2/±4/±8/±16	g	
Module Performances	Gyroscope ranges	±125 to ±2000	°/s	
	Magnetic field range	±1300 (x, y) ±2500 (z)	uT	
	Magnetic field resolution	~0.3	uT	
	Definition	Value	Unit	
	Dimensions	5.2x3.8x1.13	mm	
	Weight	N/A	g	
	Operating Temperature Range	-40 – +85	°C	
Physical Module	Temperature Gradient		°C/min	
Specifications	Max humidity @40 °C		% r.h.	
	Supply Voltage	2.4 - 3.6	V	
	Peak Voltage	3.6	V	
	Supply Current	0.012 (@ 3V)	A	
	Battery (Type /Ah)	N/A	Ah	

Environmental Specifications	Environment	Complies with RoHS, RoHS2, RoHS3 directives
	Vibration, Shock, Bump	TBD
	EMI/EMC	TBD
	Load Dump	TBD
Note		

